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Abstract

The pathfinding problem is a fundamental challenge in artificial intelligence, with numerous

real-world applications across a variety of environments and domains. Many of these applications

involve a large number of users, making it crucial to solve the pathfinding problem efficiently in

order to ensure scalability. In this dissertation, we focus on the pathfinding problems in three

distinct applications: (i) computer games, where the pathfinding task involves navigating an

agent in a Euclidean plane with polygonal obstacles, (ii) route planning software, where the

objective is to find an efficient path for a user to travel on a road network or a network that

considers varying travel time, and (iii) automated warehouses, where multiple agents need to be

coordinated simultaneously. Below, we briefly discuss our motivations and contributions made

to each of these applications.

In computer games, agents must navigate in a Euclidean space with polygonal obstacles.

Leading works in this area all rely on state-space search to find a solution and that search is often

an all-or-nothing affair, meaning that no results are returned until the best solution is found.

This behaviour may cause first move lag, where a mobile agent must wait for the search to finish

completely before taking even the first step towards its destination. To address this undesirable

behaviour, we propose efficient algorithms for both optimal and suboptimal pathfinding. Our

first algorithm, End Point Search (EPS), finds the optimal path faster than a range of state-

of-the-art pathfinding algorithms in the field. Not only is EPS fast, but it also exhibits strong

any-time behaviour, enabling it to find feasible solutions before proving optimality. Our second

algorithm, Centroid Path Extraction (CPE), finds suboptimal paths within a fixed bound of

the optimal solution. Experiments show that CPE is faster than competitors and computed

solutions have better path quality than competing suboptimal algorithms.

When it comes to routing planning, our initial focus is static road networks, where the cost on

each edge of the network is modelled as a constant value, representing travel time or distance.

The state-of-the-art algorithm in this area is Compressed Path Databases (CPD) a power-

ful database-driven method that forgoes conventional state-space search and instead extracts

shortest paths using precomputed first-move data. Yet, CPDs have two main drawbacks: (i)

constructing the database requires an offline all-pairs precompute, which can sometimes be pro-

hibitive and; (ii) extracting a path requires a number of database lookups equal to its number of

edges, which can be costly in terms of time. To mitigate the disadvantages of CPDs, we investi-

gate connections with another family of successful, but search-based, speedup techniques called

Contraction Hierarchies (CH). This leads us to introduce our new technique, CH-CPD, which

combines the strengths of the state-of-the-art algorithms CH and CPD. In a range of experiments

on road networks, we show that our new CH-CPD can be built cheaper than conventional CPD,
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and runs faster than a range of existing algorithms, including CH and CPD. Partial CH-CPD

further reduces the preprocessing cost while maintaining the competitive runtime.

To better support more accurate route planning, we also explore the pathfinding problem in

time-dependent road networks, where the cost of each edge is determined by a piecewise linear

function that varies depending on the time of day. Time-dependent road networks provide a

more precise representation of road conditions by considering expected traffic congestion. The

current state-of-the-art algorithm in this area is called Time-dependent Contraction Hierarchies

(TCH). Although fast and optimal, TCH still suffers from two main drawbacks: (i) the usual

query process uses bidirectional Dijkstra search to find the shortest path, which can be time-

consuming; and (ii) the TCH is constructed w.r.t. the entire time domain T , which complicates

the search process for queries q that start and finish in a smaller time period Tq ⊂ T . To further

enhance the performance of TCH, we develop several techniques that improve TCH by making

use of time-independent heuristics, which speed up optimal search, and by computing TCHs

for different subsets of the time domain, which further reduce the size of the search space. Our

results indicate substantial improvements in query times compared to the baseline TCH.

Finally, we focus on automated warehouses, addressing the Multi-Agent Pathfinding (MAPF)

problem, which asks us to simultaneously plan collision-free paths for groups of moving agents.

Among the leading methods for optimal MAPF is Conflict-Based Search (CBS), an algorithmic

family which has received intense attention in recent years and for which large advances in effi-

ciency and effectiveness have been reported. Yet all the recent CBS gains come from reasoning

over pairs of agents only. We address this problem by demonstrating how CBS can be further

enhanced by reasoning about more than two agents at the same time. Our new reasoning tech-

niques, Cluster Heuristic and ByPass (CHBP), allow us to generate stronger lower bound values

for CBS and identify additional bypasses (alternative cost-equivalent paths), which can both

reduce the number of nodes expanded by CBS. Our experiments show substantial improvements

for CBS, especially on dense maps, and we believe that the use of cluster reasoning opens up a

promising new research direction.

Amid the swift advances of automated warehouses, MAPF has been receiving increasing at-

tention in recent years. Many works appear on this topic each year, and a large number of

substantial advances and performance improvements have been reported. Yet measuring the

overall progress in MAPF is difficult: there are many potential competitors, and the compu-

tational burden for comprehensive experimentation is prohibitively large. Moreover, detailed

data from past experimentation is usually unavailable. To lower the barrier of entry for new

researchers and further promote the study of MAPF, we introduce a set of methodological best

practices for experimentation and reporting, along with a variety of visualisation tools. These
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resources can help the community to establish clear indicators for state-of-the-art MAPF per-

formance and facilitate large-scale comparisons between MAPF solvers. We implement these

ideas into a publicly available web platform for the benefit of the community.

Our research has yielded efficient and effective algorithms for solving pathfinding problems

in a variety of distinct applications. Advancing the state-of-the-art in the field, we are now

able to answer pathfinding queries much faster than before, potentially benefiting not only the

applications we targeted but also a broader range of other extended applications. Looking

forward, we also suggest several promising directions for future research.
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Chapter 1

Introduction

Pathfinding queries are one of the most ubiquitous practical uses of computing, which involve

navigating an agent or groups of agents from the source locations to their destination locations

in a shared environment. These queries are widely used in various real-world applications,

including path planning in video games [1], route planning in GPS navigation software [2], multi-

robot coordination in automated warehouses [3], drone swarm coordination [4], location-based

services in indoor spaces [5], relationship reasoning in social networks [6], and so on. Due to the

broad range of practical applications and interests, solution methods that tackle the pathfinding

queries have been extensively studied by various research communities. These efforts have led

to numerous advances and optimisations over the past decades. The majority of attention is

on finding paths that: (i) meet domain-specific constraints (e.g., avoiding obstacles, avoiding

collisions with other agents, etc.); (ii) are of reasonable quality (e.g., minimal distance, minimal

travel time, etc.); and (iii) as efficient as possible in terms of response time and computational

resources (e.g., memory and preprocessing time). These criteria play a crucial role in making

pathfinding queries more practical and useful in a wide range of applications.

In this dissertation, we investigate pathfinding queries in the context of three prevalent real-

world applications: computer games, route planning software and automated warehouses. Sec-

tion 1.1 elaborates on the applications of pathfinding queries in different domains and our

motivation for studying them. Section 1.2 highlights our contributions, including novel algo-

rithms for improving the query performance and reducing preprocessing cost. Lastly, Section 1.3

describes the organisation of this dissertation.

1.1 Motivation

In this section, we provide a summary of our target application settings and the limitations of

existing works.

1
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1.1.1 Pathfinding in Computer Games

In computer games, the environment is typically represented as a two-dimensional plane which

contains polygonal obstacles that must be avoided by virtual characters. Figure 1.1 shows a

typical example from one of the most popular online games, League of Legends (LoL)1. The

obstacles here are rocks and buildings. During a game, players navigate their characters around

the map, which is facilitated by solving a range of pathfinding queries. Pathfinding is also

required as part of higher-level decision-making for non-player characters (NPCs), such as build

planning and combat planning. In each of these cases, it is desirable to find direct and detour-

free paths because virtual characters need to appear intelligent to human observers. Yet this

apparently simple task is surprisingly complicated because games occur in real-time, they often

involve a large number of player and non-player characters, and because there are only limited

CPU and memory resources available for pathfinding (the bulk of computational resources are

assigned to other higher-priority tasks such as graphics, networking and so on [7, 8]). Effective

algorithms in this space are ones that compute paths which are: (i) obstacle avoiding; (ii) as

short as possible; and (iii) computed as fast as possible.

A wide variety of algorithms have been proposed to quickly find paths in game settings. Many

of these works model the Euclidean environment in an approximate way using a grid map [9–12].

Grids are simple to build and fast to search. Yet the resulting grid paths are often longer than

necessary and agents following grid paths appear unrealistic due to limited movement options

(they can only turn at 45 or 90 degrees). An alternative and more precise way of representing a

map is to reason over the Euclidean space directly. Paths computed with these types of models

are short and agents following these paths appear realistic. Yet there are only limited works

in this area [13–15]. All rely on state-space search to find a solution and that search is often

an all-or-nothing affair; i.e. until a best solution is found, nothing is returned. This behaviour

may be undesirable as it introduces the potential for so-called first move lag, where a mobile

Figure 1.1: An example of online game (League of Legends), where the game engine needs to
navigate the player’s character by avoiding the obstacles, e.g., rocks, buildings etc.

1Downloaded from https://leagueoflegends.com/en-us/

https://leagueoflegends.com/en-us/
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agent must wait for the search to finish completely before it can take even a first step toward its

destination. Motivated by these limitations of the existing research, we identify the following

research challenge that we set out to address in this dissertation:

Challenge #1. In a Euclidean space that models the environment precisely, can we

design an efficient pathfinding algorithm that does not only find the shortest path,

but also mitigates the first move lag?

1.1.2 Pathfinding in Route Planning Software

Route planning software, of the type used for in-car navigation, is among the most ubiquitous

applications of AI. Here, the environment is modelled as a graph, with each node representing a

road intersection and each edge representing a traversable road segment between two adjacent

nodes. Figure 1.2 shows an example of route planning from the Monash Clayton campus to the

Caulfield campus using Google Maps2; the system-recommended path is coloured in blue, and

other alternative paths are coloured in grey. From the users’ point of view, various types of

paths (e.g. shortest distance, fastest travel time, etc.) may be preferred for their daily travel,

but the main objective is to make the journey as efficient or economical as possible. From the

system perspective, each path recommendation requires a pathfinding query on a large scale

road network (e.g., city sized). Every day, millions of requests that need to be processed, making

it a challenging task to provide high-quality paths that meet user criteria while maintaining fast

response times. Effective algorithms for route planning are ones that: (i) find a feasible path

from each start location to each intended destination on the graph; (ii) minimise the user’s

objective; and (iii) solve each problem as quickly as possible.

Figure 1.2: Route planning on Google Maps, where the user needs to find the fastest path
from Monash Clayton campus to Caulfield campus

2Downloaded from https://maps.google.com

https://maps.google.com
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Static Road Networks is a popular type of route planning model where the cost to travel on

each road segment is fixed and unchanging. Many search-based algorithms have been proposed

to solve these types of problems. These works tend to reduce the search space by using effective

heuristics [16, 17]; bidirectional search [18, 19]; edge labelling [20, 21]; and the idea of short-

cuts [22–24]. Yet these algorithms still require substantial search time to find optimal paths,

when deployed at scale [25]. Therefore, the state-of-the-art pathfinding algorithms for road net-

works are often oracle-based approaches [26, 27], a family of techniques that forgo conventional

state-space search and instead extract the shortest paths using precomputed data. Although the

oracle-based approach is fast at finding optimal paths, it requires substantial time and memory

to build and store the oracle. These preprocessing costs increase in the size of the input graph,

which can be prohibitive in some cases, especially for large input graphs. Motivated by this, we

post the following challenge:

Challenge #2. In a static road network, can we reduce the preprocessing costs of

oracle-based algorithms while still preserving their efficient query performance?

Time-dependent Road Networks is a more sophisticated type of route planning model

where travel time on the network are allowed to vary during the day. These models can more

accurately represented actual road conditions, since traffic congestion (among other issues) can

affect travel times throughout the day. A variety of existing works for static road networks can

be extended to the time-dependent scenario, e.g., the idea of heuristic and bidirectional search

are extended by [28–30]; edge labelling and shortcuts are generalised by [30–32]. However,

unlike the static road network, these extended approaches need to handle the time-dependent

data for the entire time domain (usually 24 hours) in order to answer any queries issued. Due

to the large period of time domain and complex travel time function used to model changing

costs, these approaches often compute solutions much more slowly, and they require substantial

time and memory to construct auxiliary data structures that cover the entire time domain.

Therefore, we post the challenge below:

Challenge #3. In a time-dependent road network, can we design pathfinding algo-

rithms that manage the time-dependent data more efficiently to further accelerate

the pathfinding algorithm?

1.1.3 Pathfinding in Automated Warehouses

In automated warehouses, hundreds of robots work together to pick and deliver items simul-

taneously. To facilitate coordination and synchronisation the problem is often discretised: the

environment is mapped onto a 4-connected grid, time is discretised into unit-sized steps and
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during each timestep robots can only move to an adjacent grid node or wait in their current

location. An example of this setup can be seen in Amazon’s automated warehouse3, where

each blue driving unit (robot) has been assigned multiple delivery tasks (refer to Figure 1.3).

Each individual robot aims to complete its task as quickly as possible, and therefore prefers the

shortest path possible. But the robots must also work together, such that there is no collision

between robots during the execution of their tasks. A variety of additional considerations ap-

pear in such setups. For example, thousands of orders are received daily each of which is further

broken down into multiple delivery tasks for robots; the system also needs to continuously syn-

chronise the robots, correct their location, and re-plan their paths; all of this must also occur

in real-time. Yet the core challenge can be stated much more simply and abstractly: find a set

of paths to move each robot/agent from a fixed source to fixed destination, all while ensuring

that: (i) no collisions occur with other agents or obstacles; (ii) the sum of individual path costs

is minimised; and (iii) the entire plan is found as quickly as possible. We refer to this type of

pathfinding query as classic Multi-Agent PathFinding (MAPF) [3].

Conflict-based Search (CBS) [33] is a state-of-the-art algorithm for MAPF, which can be

understood as a best-first search algorithm that routes each agent independently and then re-

solves conflicts afterwards. In recent years, there has been massive advances in the efficiency

and scalability of CBS. These gains have been achieved by: (i) taking into account symme-

tries that result in the conflicts between two agents [34, 35]; (ii) generating complex admissible

heuristics [36, 37]; and (iii) introducing bypasses [38], to reduce the number of subproblems

that CBS must tackle. Yet CBS timeout failures, even on modest size problems with dozens

of agents, are not uncommon. Thus far, the CBS algorithm only reasons about incompatibil-

ity between at most two agents at a time. It lazily detects conflicts between pairs of agents,

resolves those conflicts by adding pairwise constraints, and generates heuristics by combining

information about the interactions of pairs of agents. How to reason with more than two agents

Figure 1.3: An example of the automated warehouse in Amazon, where each mobile robot
needs to deliver items and coordinate with each other.

3Downloaded from https://www.aboutamazon.com/news/operations/10-years-of-amazon-robotics-how

-robots-help-sort-packages-move-product-and-improve-safety

https://www.aboutamazon.com/news/operations/10-years-of-amazon-robotics-how-robots-help-sort-packages-move-product-and-improve-safety
https://www.aboutamazon.com/news/operations/10-years-of-amazon-robotics-how-robots-help-sort-packages-move-product-and-improve-safety
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at a time is a challenging opening question and is necessary for the CBS algorithm to improve

further, thus we identify the following challenge:

Challenge #4. In the classic MAPF problems, can we design new algorithmic

techniques to capture the incompatibility of more than two agents and utilise this

information to further improve the performance of the state-of-the-art optimal

MAPF algorithm CBS?

Tracking Progress. As industrial interest continues to grow, the number of publications

on the topic of MAPF has exploded [34, 39–43]. Many works now appear, across many dif-

ferent venues, and there have been substantial performance improvements. To track progress

in the area, the community has developed a set of standardised MAPF benchmarks [3], which

cover a variety of popular application domains and synthetic/pathological test cases. In total,

there are more than 1.5 million standard instances with up to thousands of moving agents per

instance. Unfortunately, the computational burden associated with running this benchmark is

large, which means that most researchers attempt to solve only a limited subset of instances

and then only compare against a limited subset of potential competitors. Published works typ-

ically only include headline results, such as success rates and total problems solved, they do

not mention which specific problems were solved, which were closed, and where the remaining

gaps are. Supplementary data, such as concrete plans and best-known bounds, which can allow

other researchers to verify claims and build on established results, are seldom available. Thus,

despite notable advances, and despite the availability of benchmark problem sets, we do not cur-

rently have a clear picture of overall progress in MAPF. We thus identify the following challenge:

Challenge #5. In the classic MAPF problems, can we design tools and methodolo-

gies to track the progress of MAPF algorithms, lowering the barrier to entry for

new researchers and advancing the study of MAPF?

1.2 Contributions

In this section, we outline the contributions made by this dissertation to each challenge of

pathfinding problem, including the associated research publications.

1.2.1 Fast Optimal and Bounded Suboptimal Euclidean Pathfinding

To tackle Challenge #1, we first develop an optimal Euclidean pathfinding algorithm, End

Point Search (EPS), which mitigates first move lag using anytime behaviours [44]. i.e., we aim
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to compute “good” solutions quickly and we guarantee to return optimal solutions eventually,

given sufficient time. In a range of experiments and empirical comparisons we show that: (i) the

auxiliary data structures required by EPS are cheap to build and store; (ii) for optimal search,

the new algorithm is faster than a range of recent pathfinding algorithms, with speedups ranging

from several factors to over one order of magnitude; (iii) for anytime search, where feasible so-

lutions are needed fast, we report even better performance. Our second strategy to address the

first move lag is to develop an ultra-fast bounded suboptimal pathfinding algorithm called Cen-

troid Path Extraction (CPE). CPE is completely search-free, simultaneously fast, and returns

a path within a fixed bound of the optimal solution. In a range of empirical results, we show

that: (i) our approach outperforms a range of optimal and suboptimal pathfinding algorithms

proposed in the literature; (ii) our approach demonstrates excellent path quality, better than all

existing suboptimal pathfinding algorithms; and (iii) the approach offers flexibility by allowing

a trade-off between the preprocessing cost (space and time) and the suboptimality bound.

The optimal algorithm EPS [45] was published in the Twenty-Ninth International Joint Con-

ference on Artificial Intelligence (IJCAI 2020). The suboptimal algorithm CPE [46] was pub-

lished in the Artificial Intelligence Journal (AIJ 2022) as an extension of our IJCAI 2020 paper.

1.2.2 Contracting and Compressing Shortest Path Databases

To tackle Challenge #2, we propose a novel oracle, called CH-CPD, that can efficiently an-

swer the shortest path query in a static road network. CH-CPD mitigates the disadvantages of

the leading oracle approach, Compressed Path Databases (CPD), by investigating connections

with another family of successful search-based speedup techniques called Contraction Hierar-

chies (CH). While CH-CPD extracts the shortest path fast, we further propose more advanced

techniques to improve the preprocessing time, and a partial CH-CPD search that allows users

to trade off between memory cost and query performance. In a range of experiments on road

networks, we show that CH-CPD substantially improves on conventional CPDs in terms of pre-

processing costs and online performance. We also report convincing query time improvements

against a range of methods from the recent literature.

The algorithm CH-CPD [47] was published in the Thirty-First International Conference on

Automated Planning and Scheduling (ICAPS 2021).

1.2.3 Improving Time-Dependent Contraction Hierarchies

To tackleChallenge #3, we focus on improving the state-of-the-art algorithm, Time dependent

Contraction Hierarchies (TCH), which aims to compute the optimal path in a time-dependent

road network. Specially, we adapt two admissible lower-bounding functions: landmarks [16] and
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CPD heuristics [48]. Both heuristics only require auxiliary data structures built based on the free

flow cost, which does not increase in size with the addition of time information. Additionally,

we introduce two algorithms called Single-layer TCH (STCH) and Multi-layer TCH (MTCH)

that efficiently handle time-dependent data by constructing a series of smaller TCHs, each of

which concentrates on a specific part of the time domain T . By choosing the appropriate TCH

for each query q ∈ T , we can retain the optimality guarantees of the original algorithm while

substantially improving search performance. We evaluate our proposed algorithms on a range

of time-dependent road networks, including real-world as well as synthetic datasets. Results

show substantial improvement over the baseline TCH method.

This research [49] was published in the Thirty-Second International Conference on Automated

Planning and Scheduling (ICAPS 2022).

1.2.4 Beyond Pairwise Reasoning in Multi-Agent Pathfinding

To tackle Challenge #4, we focus on improving a leading optimal MAPF algorithm called

Conflict-based Search (CBS). Intensively studied, all the recent CBS gains come from reasoning

over pairs of agents only, we propose a novel algorithm called Cluster Heuristic and Bypasses

(CHBP), which overcomes this limitation by extending CBS heuristics to reason about more

than two agents at every node. CHBP does this by exploiting mutex propagation [35], a success-

ful pairwise reasoning technique, which we extend to clusters of more than two agents. CHBP

derives stronger bounds for CBS and also generate new kinds of bypasses, where the assigned

paths of some agents are replaced to reduce the number of conflicts. In a range of empirical

results, CHBP shows substantial improvements for CBS, especially on dense maps.

This research [50] was published in the Thirty-Thrid International Conference on Automated

Planning and Scheduling (ICAPS 2023).

1.2.5 Tracking Progress in Multi-Agent Pathfinding

To tackle Challenge #5, we introduce a new set of methodological and visualisation tools to

facilitate comparisons between a wide range of MAPF methods. We then undertake a large set

of experiments, with several currently leading optimal and suboptimal solvers, in an attempt

to map the current Pareto frontier. Finally, we propose a new online platform for the MAPF

community to track and validate further gains and to improve visibility for and access to existing

solvers. We believe that these proposals can help identify the main strengths of existing research

and the remaining challenges in the area. They can also be used to track progress on those

challenges over time. Finally, we believe that these proposals can help to lower the barrier of

entry for new research on the topic of MAPF.
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This research [51] was presented as a system demonstration at the Thirty-Thrid International

Conference on Automated Planning and Scheduling (ICAPS 2023). The demo can be accessed at

the following link: https://icaps23.icaps-conference.org/program/demos. A full-length

manuscript is also available at: https://arxiv.org/abs/2305.08446.

1.3 Thesis Organization

This dissertation is organised as follows:

• Chapter 2 reviews the literature that related to pathfinding problem.

• Chapter 3 presents our techniques [45, 46] to efficiently find optimal and suboptimal

obstacle-avoiding path in a Euclidean plane.

• Chapter 4 covers our efficient oracle-based approach [47] for retrieving the shortest path

in a static road network.

• Chapter 5 describes our enhancement techniques [49] on the state-of-the-art algorithms,

TCH, for finding the shortest path in a time-dependent road network.

• Chapter 6 shows our novel cluster reasoning techniques [50] to enhances the performance

of the CBS algorithm for solving the classic MAPF problem.

• Chapter 7 describes our proposed platform [51] for continuously monitoring the progress

of MAPF algorithms.

• Chapter 8 concludes our research and discusses future works.

https://icaps23.icaps-conference.org/program/demos
https://arxiv.org/abs/2305.08446


Chapter 2

Literature Review

In this chapter, we provide a brief overview of the related work for pathfinding queries in each

application domain. More specifically, we provide the related work for pathfinding queries in

Euclidean space in Section 2.1. Following by the literature overview of pathfinding queries in

road networks in Section 2.2. Section 2.2.4 further discusses the existing work for pathfinding

queries in time-dependent road networks. Finally, we present the related work for classic multi-

agent pathfinding in Section 2.3.

2.1 Pathfinding in Euclidean Space

In the Euclidean pathfinding problem, we are asked to find point-to-point paths in a continuous

2D workspace which contains polygonal obstacles in fixed positions. Any non-obstacle point

from the workspace is a potential source (s) or destination (d) position and the objective is

to find an obstacle avoiding, distance minimum path, between pairs of points that are a priori

unknown. We next define some necessary terminology.

A polygon is a closed set of edges and a set of points each called a vertex. Each edge is a

contiguous interval between two different vertices (i.e., e = [vi,vj ]), where vi and vj are the

closed ends of e. Polygons can overlap, but only if they share a common edge or vertex. A

convex polygon is a polygon where every line drawn between points in the polygon remains

within the polygon. Two points are visible if there exists a straight line between this pair that

does not intersect with any point from the interior of a polygon. We suppose that a mobile

point-sized agent can directly travel between any pair of co-visible points. A path is a sequence

of points P = ⟨ p1,p2, · · · , pk ⟩ such that ∀ pi, pi+1 ∈ P , pi and pi+1 are co-visible. The cost of a

path P is the cumulative Euclidean distance between every successive pair of points; i.e., Σ|P |
=

∑k−1
i=1 ed(pi, pi+1) where ed(p, p′) is the Euclidean (straight line) distance between p and p′.

A path is optimal if its cost is minimum among all paths between its source and destination.

10
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A vertex of a polygon is called a convex vertex if any line between two points “near” the

corner stays within the polygon. More formally, if we form the triangle of the vertex with its

two neighbours on the polygon, then the triangle is within the polygon. For a path P to be

optimal in a Euclidean pathfinding problem with polygonal obstacles, ∀ pi ∈ P except for source

and destination, pi must be a convex vertex [15, 52]. A vertex is a dead-end vertex if it never

occurs on an optimal path, unless it is the start or end of the path.

In this section, we categorise related works into four categories: grid-based pathfinding; any-

angle pathfinding; visibility graph-based path planning; and mesh-based path planning. Grid-

based pathfinding and any-angle pathfinding are designed for grid maps, which involve approxi-

mating the environment into a grid of cells. This can result in suboptimal and unrealistic paths.

On the other hand, visibility graph-based path planning and mesh-based path planning operate

in exact Euclidean space, allowing for a precise representation of the environment and finding

the shortest Euclidean path. For each category, we give an overview of existing works.

2.1.1 Grid-based Pathfinding

As mentioned earlier, a grid map is a simple way to represent a two-dimensional space, and the

model is commonly used in computer games and robotics. Creating a grid map is a two-step

process: (i) Discretise the area into a set of fixed-resolution grids, (ii) Mark each grid as either

blocked (if it overlaps with an obstacle) or unblocked (if it’s traversable). Figure 2.1 shows

an example of creating a grid map, where the Euclidean plane (left) is discretised into a grid

map (right). Since each grid is either a block or unblocked cell, the entire grid map can be

represented as a Boolean array with linear space cost based on the number of cells. In grid-

based pathfinding, an agent is limited to moving only to the adjacent cells in a four-connected

grid map. Additionally, it can move diagonally in an eight-connected map. The problem

of finding the shortest grid path has been well-researched and can be efficiently solved using

various algorithms, many of which instantiate the A* search [17]. We give a brief explanation:

The A* algorithm is one of the most famous algorithms in pathfinding. This algorithm com-

bines the best of both Dijkstra’s algorithm [53] and heuristics to determine the optimal path in

a grid map. In general, the A* algorithm contains three key components as follows:

• Search Nodes & Successors: A search node in the A* algorithm represents the current

node being searched. For each search node, the algorithm maintains: (i) a g-value, a

cost-incurred value that represents the lowest cost from the source to the node, and (ii)

predecessor nodes, a reference to the parent node that allows easy extraction of the path.

The successors of a search node are the next set of nodes that can be reached from it. In

grid maps, the adjacent grid vertices are considered as the successors of the search node.
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Figure 2.1: An example of creating a grid map, where (i) shows the polygon-shaped obstacles
before converting to grid cells and (ii) shows the resultant grid map after discretisation. The

source (s) and destination (d) of a shortest path query are shown in red.

• Evaluation Function: The A* algorithm uses an evaluation function f to determine

the priority of search nodes. It is calculated as the sum of g-value and h-value, where

the h-value is obtained from a heuristic function. Heuristics estimate the cost from the

current node to the destination and are important for the algorithm’s efficiency. Simple

heuristics, such as Euclidean, Manhattan, and Octile, often appear as baselines in the

literature.

• Open and Closed Lists: The A* algorithm uses two data structures to prioritise the

expansion of search nodes: the open list and the closed list. The open list contains the

search nodes waiting to be expanded, prioritised by their f -value, while the closed list

contains nodes that have already been expanded, avoiding repetition

The A* algorithm searches in a best-first manner by expanding the node with the lowest

f -value from the open list. When generating successors, it filters out successors already in

closed list and discards successors with higher g-value than the recorded minimum g-value for

each vertex. The rest of the successors become new search nodes, with updated g and f values,

and are added to the open list. The search ends when the open list is empty or the destination

is reached.

Many existing works enhance the A* algorithm from various perspectives. These include

enhanced heuristics, such as the differential heuristic [54], which improves distance estimation

through the use of the triangle inequality, and the fast map heuristic [55], which calculates

a more accurate estimation by utilising a popular dimensionality reduction techniques from

machine learning. Additionally, there are symmetry breaking techniques like Jump Point Search

(JPS) [9, 56], which reduce the branching factors of the search by selectively expanding only a

distinguished set of ”jump points” found by scanning ahead grid-based maps. There are also
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Figure 2.2: (i) shows a pair of h-reachable subgoals H and A in a grid map, the dashed arrows
indicate the shortest octile distance paths from H to A; (ii) shows an example of subgoal graph

considering the subgoals placed on convex vertices of obstacles.

many hierarchical pathfinding algorithms [52, 57] that speed up the A* search by limiting the

search to only traverse between different levels of hierarchies.

2.1.2 Any-angle Pathfinding

Typically, grid-based pathfinding results in suboptimal and unrealistic paths as movements are

only allowed in certain directions (i.e., horizontal and vertical in a four-connected grid, or in

addition diagonal movement in an eight-connected grid). Although the pathfinding process still

takes place on a grid map, any-angle pathfinding avoids this restriction by allowing movement

in any direction and, consequently, finds paths that are substantially shorter.

The state-of-the-art any-angle pathfinder, ANYA [58], is a fast and online pathfinding algo-

rithm that finds the optimal any-angle path. Anya is an interval-based searching algorithm that

instantiates A*. It scans the grid row by row and finds an optimal path by expanding the most

promising intervals in the open list. Later on, ANYA has also been extended to Polyanya in

order to find the shortest path in Euclidean space, we explain the detail of Polyanya in later of

Section 2.1.4. Apart from the optimal algorithm Anya, there is also a range of algorithms that

find suboptimal any-angle paths.

The N-level subgoal graph [59] is a state-of-the-art suboptimal any-angle algorithm. The

subgoal graph [52] is constructed by placing subgoals on the convex corners of obstacles. Instead

of connecting each pair of subgoals that are visible to each other, the subgoal graph only connects

a small subset of subgoals that are direct-h-reachable. Two subgoals are h-reachable if there

exists a traversal path equal to the octile distance between them, and they are direct-h-reachable

iff all shortest trajectories (octile distance paths) are traversable with no subgoals between them.

Figure 2.2 (i) shows an example where the subgoal A and H are h-reachable, but not directly
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h-reachable as there are other subgoals present in between (e.g. D and E). Figure 2.2 (ii) shows

a complete subgoal graph on the same grid map. The subgoal graph was originally designed

to determine the optimal grid path, therefore only directly h-reachable edges are added to the

graph to guarantee that each edge represents a unique grid path. However, each directly h-

reachable edge between two subgoals also ensures that they are co-visible, making the subgoal

graph also suitable for any-angle pathfinding.

The N-level subgoal graph builds, on top of this simple subgoal graph, a hierarchy that

is similar to a contraction hierarchy [22]. Searching in the N-level subgoal graph only requires

connecting the source and destination to the corresponding direct-h-reachable subgoals, and then

identifying the reachable subgoals from the source to the destination through the ascending edges

(edges from a subgoal to its higher-level subgoals). Using the graph consisting of hierarchies of

subgoals, one can simply apply an A* algorithm to find a path quickly, or alternatively apply

the any angle Theta* [60] algorithm to search for a path with better path quality as the edges

in this graph may be non-taut. Other way of improving path quality is to consider the 2k grid

neighbours [12], where the path quality can be controlled using the value of k.

The N-level subgoal graph outperforms a range of A*-like suboptimal algorithms for any-angle

pathfinding, such as: Theta* [60] which improves the path quality by performing a line-of-sight

check when expanding a search node; Field A* [11] which generalises the ideas from Field D* [61],

allowing a straight-line trajectory from a search node to any of vertices on the boundary of its

adjacent grids, and updates g-value by using linear interpolation; and Block A* [10] which

performs a blocks-based A* search with local distance database, an auxiliary data structure

that partitions the grid map into m× n equal size of blocks and stores the distance of optimal

paths between any two boundary vertices inside each block.

2.1.3 Visibility Graphs

A Visibility Graph (VG) [62] is constructed by connecting any pairs of co-visible vertices ap-

pearing on the corners of the obstacles. In contrast to approaches that discretise the obstacles

using a grid, the visibility graph allows obstacles to be precisely represented in Euclidean space.

Hence, it finds the Euclidean optimal path precisely (which is guaranteed to be equal to or

shorter than the any-angle path on grid maps). Search in a visibility graph only requires con-

necting the source and destination to their set of visible vertices before an A* algorithm can

be applied to find the Euclidean optimal path. However, the visibility graph suffers from two

major issues: (i) it requires high memory consumption because, in the worst case, the size of

the graph is quadratic in the number of corners of the obstacles; and (ii) branching factors of

nodes in the graph are high and, consequently, the search is unlikely to be efficient.
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Figure 2.3: (i) shows an example of non-turn edges AK, the shaded regions indicate the
potential locations of turning edges relative to A and K; (ii) shows an example of sparse visibility

considering the convex vertices (coloured in green) of obstacles.

Sparse Visibility Graphs (SVG) [15] focus on addressing the above-mentioned two major issues

and improve over the original visibility graph by removing unnecessary edges (i.e., a non-turn

edge evivj where the angle from vi to vj does not allow turning around the polygon defining

vertex vj) and non-convex vertices. Figure 2.3 shows an example of building a sparse visibility

graph for the convex vertices of the obstacles. Specifically, Figure 2.3 (i) shows the turning

region (i.e., shaded area) of A and K, where the edges must be located in order to turn around

the obstacles. The non-turn edge AK that is not within the turning region is pruned. The

complete sparse visibility graph is shown in Figure 2.3 (ii). As evident in this toy example,

sparse visibility significantly reduces the branching factor on graph nodes, which allows the

graph to fit into the memory even for large maps. Due to the smaller size of the graph, the

search is also more efficient. Edge N-Level Sparse Visibility Graphs (ENLSVG) [15] build a

hierarchy by iteratively removing the non-taut paths. Such a hierarchy partitions the SVG into

multiple levels where, in each level, edges only have taut neighbouring paths to the edges in the

higher levels. ENLSVG restricts the search to only consider the edges that increase the levels

from both ends. This results in searching in a smaller taut-path graph, which improves the

performance further.

2.1.4 Mesh-based Planners

Mesh-based planners work by preprocessing the non-obstacle regions of the map into a set of

convex polygons, called a navigation mesh. In Figure. 2.4, black polygons are obstacles whereas

green/white polygons correspond to a navigation mesh. Popular with game developers [63],

navigation meshes have several attractive properties: they are easy to compute [64], are cheap

to store and update, and guarantee representational completeness (i.e., every traversable point

appears in the mesh). Mesh-based path planner combines the strengths of any-angle pathfinding
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Figure 2.4: Node expansion in Polyanya. When the current node ([D,K],s) is expanded,
it generates the observable successors ([D’,L],s), and ([L,K],s); and non-observable successors

([D’,O],D), ([O,A],D), ([A,B],D) , ([B,C],D), and ([C,D],D).

and visibility graph to find the Euclidean shortest path precisely. The state-of-art algorithm is

Polyanya [14], a fast, online, and optimal pathfinding algorithm that extends and generalises

Anya. Next, we present the details:

Polyanya search instantiates A* search [17] but on a navigation mesh. The algorithm can

therefore be described in the same general way: there exist search nodes which generate suc-

cessors and these are expanded in the best first order according to some admissible heuristic

function. Polyanya differs from A* only in the domain-specific model used for each of these

components. We sketch the details below (see Figure 2.4).

• Search nodes: A search node is a tuple of the form (I, r) where r is a distinguished

vertex called the root and I is a contiguous interval of points from an edge of the mesh

with every point p ∈ I being visible from r. The model can be understood as follows: the

root r corresponds to the last turning point on the path and I represents all the possible

taut continuations of the path, on the way to the destination. The source point s is a

special case and defined as (I = [s], r = s). In the example of Figure 2.4, ([D, K], s) is a

search node where the root is s and the contiguous interval visible from s is [D, K].

• Successors: The successors of node (I, r) are generated by “pushing” the interval I away

from r and across the face of an adjacent traversable polygon. There are two types of

successors: observable and non-observable. A successor (I ′, r) is observable if each point

p′ ∈ I ′ is visible from r. By contrast, a successor (I ′, r′ ̸= r) is said to be non-observable

if each point p′ ∈ I ′ is not visible from r. Note that observable successors share the same

root as the parent. For non-observable successors, the root r′ is one of the two endpoints

of the parent interval I. Figure 2.4 shows the successors for node ([D, K], s) in green. Since

the edge [L, K] is visible from the root s, it is an observable successor and has the same
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root, i.e., the successor node is ([L, K], s). In contrast, the edge [O, A] is not entirely visible

from the root s and it is a non-observable successor with root D, i.e., the successor node

is ([O, A], D). The destination is a special case and can be generated as soon as the search

reaches its containing polygon.

• Evaluation Function: To prioritise a node n = (s, r) for expansion, Polyanya instanti-

ates the f -value function: f(n) = g(n) + h(n). Here g(n) is the cost of the optimal path

from the source node s to the root r. The function h is an admissible lower bound and

indicates the cost from r, via some point p ∈ I, to the destination d. The estimate requires

only simple geometry. Consider for example the node n = ([O, A], D) from Figure 2.4. The

g-value (shown in red) is the shortest distance from s to the root D. The h-value (shown in

blue) is the minimum Euclidean distance from D to d that passes through the edge [O, A],

i.e., h = ed(D, O) + ed(O, d), where ed() is the Euclidean straight line distance. See [14] for

more details.

Polyanya terminates when the destination is expanded or when the open list becomes empty.

It outperforms a range of pathfinding algorithms that work on Constrained Delaunay Triangu-

lation [65] (CDT), a type of navigation mesh where the non-obstacle regions are modelled as

triangles. We discuss a number of these methods below:

Channel search [66] finds the shortest channel between the source and destination from the

CDT by using a modified A* algorithm. The search begins from the triangle that contains the

source, and always considers the midpoint of the non-constrained edges as neighbours to expand

the search nodes. The search terminates when it reaches the destination and applies the funnel

algorithm [67] to retrieve a local optimal path within the channel. Channel search is fast and

easy to implement, but can return suboptimal paths. Triangulation A* (TA*) [68] works in

a way similar to the channel search. However, instead of terminating the search immediately,

TA* takes the cost of the best path found so far as an upper bound. It continuously explores

the most promising channel and updates the upper bound. TA* terminates when either the

search is exhausted or the lower bound (i.e., f -value) of the search becomes greater than this

upper bound. Thus, it guarantees finding the Euclidean optimal path for any given source and

destination. Triangulation Reduction A* (TRA*) [68] enhances TA* by preprocessing the CDT

into an abstract graph which is small, but allows the search to find the most promising channel

quickly. Note that both TA* and TRA* are any-time algorithms since these algorithms can

return suboptimal paths encountered during the search.
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2.2 Pathfinding in Road Network

In road networks, the pathfinding problem asks us to find point-to-point traversable paths

within a represented graph of the network. Let us assume the road network is static where

each edge has a constant weight. Any two vertices in the graph can be a potential source s

and destination d, and the objective is to find the shortest path traversing from s to d while

minimising the sum of edge weights. Formally, let G = (V,E,w) be a (directed or undirected)

graph, with vertices V , edges E ⊆ V × V and W : E → R+ a weight function that maps each

edge e ∈ E to a non-negative weight w(e), e.g., travel time or distance etc. A path P from s

to d in G is a sequence of vertices ⟨v0, v1, v2, . . . , vk−1, vk⟩, where k ∈ N+, v0 = s, vk = d, and

evivi+1 ∈ E, 0 ≤ i < k. The length of the path is Σ|P | =
∑k−1

i=0 w(vi, vi+1) and sd(s, d) denotes

the length of the shortest path, from s to d in G.

In this section, we first review the literature of pathfinding in a static road network. Specif-

ically, we categorise the existing work into three categories: goal-directed enhancements; hier-

archical searches and oracle-based algorithms. Goal-directed and hierarchical approaches are

search-based algorithms that typically rely on a search process to complete the pathfinding

tasks, whereas the oracle-based approach only requires extraction of the path from the oracle

during the query phase. Furthermore, we also consider the time-dependent road network, an

extension of the static road network that allows for more reliable route planning, and explain

how to extend algorithms accordingly. In this literature review, we focus on the algorithms that

find the optimal (i.e., shortest) path. For a static road network, we will assume G is undirected.

However, most of the techniques introduced can be trivially extended to directed graphs.

2.2.1 Goal-directed Enhancements

In a static road network, many graph search algorithms can be utilised to find the shortest

path. Beginning with the development of the Dijkstra algorithm [53], which iteratively expands

search nodes with the lowest cost until the shortest paths from a single source vertex to all

other vertices are found. To better find the shortest path between a pair of vertices, the A*

algorithm [17] improves upon Dijkstra’s algorithm by incorporating a heuristic function using

Euclidean estimation. The bidirectional Dijkstra search [18] extends the Dijkstra algorithm by

searching simultaneously from the source and the destination. Although these graph search

algorithms are online and find the shortest path, they often run slowly and require a significant

amount of query time due to the large search space of the road network. One way to over-

come this drawback is to precompute information from the input graph, in order to speed up

the search during the query phase. Next, we explain two popular goal-directed speed-up tech-

niques, landmarks and arc flags, which direct the search toward the destination by preferring

or eliminating edges based on preprocessing data.
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Figure 2.5: We show the result of contracting E (resp. H) in purple (resp. red). Dashed edges
indicate shortcut edges.

Ordering G D A C J E H F B I

sd(J, ) 4 5 6 1 0 2 1 2 5 2
sd(A, ) 2 1 0 7 6 4 7 8 11 8
sd(B, ) 9 10 11 6 5 7 4 4 0 3

Table 2.1: Arrays of costs for vertices J, A and B shown in Figure 2.5
.

Landmarks [16] is a method for generating admissible estimates in the shortest path search.

For each landmark l ∈ L, the algorithm computes an array during the preprocessing phase

that records the optimal distance to every other vertex. The arrays of costs are exploited to

lower-bound the true distance, from any vertex vi to any other vertex vj :

landmark(vi, vj) = max{|sd(vi, l)− sd(vj , l)| | l ∈ L} (2.1)

Table 2.1 shows arrays of costs for three landmarks: J, A and B, where the lower-bound distance

from G to F is max{|4− 2|, |2− 8|, |9− 4|} = 6 (i.e., the true distance). The effectiveness of the

lower bound depends on the distribution of landmarks, which are often selected on the borders

of the graph following the same procedure explained in [54]. Landmarks have been effectively

integrated with well-known algorithms such as A* (known as ALT [16]), the early hierarchical

approach Reach (known as REAL [69]), the highway hierarchies (known as HH* [70]), and the

Core-based routing (known as CALT [71]). Another approach to generate heuristic estimation is

called Precomputed Cluster Distance [72] (PCD) which generates a lower-bound estimation by

precomputing the optimal distance between all pairs of clusters that partition the input graph.

Compared to landmarks, applying PCD does not result in improved query time in practice, but

reduces memory cost when the number of clusters is small.

Arc flags [20, 21] is an edge labelling approach that speeds up the shortest path search in a

static road network. During preprocessing, the input graph is divided into k cells with roughly

the same number of vertices, and each edge is labelled with a k-bit Boolean vector, where the

i-th bit indicates whether the arc lies on the shortest path to some vertices of the i-th cell. The
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precomputed arc flags allow the search algorithm to eliminate edges not in the shortest path to

the destination cell, thereby reducing the search space. Similar to landmarks, Bauer et al. [71]

have demonstrated that arc flags can be integrated with several efficient pathfinding algorithms,

such as ReachFlags (based on Reach [24]), CHASE (based on Contraction Hierarchies [22]), and

TNRAF (based on Transit Node Routing [73]). Additionally, SHARC [74] is another successful

adaptation of highway hierarchies [23] and arc flags.

2.2.2 Hierarchical Searches

Another family of successful algorithms are hierarchical approaches, which exploit the hierarchi-

cal nature of the real-world transportation network. The basis of hierarchical approaches comes

from the observation that when travelling between two distant locations, the fastest route always

involves transitioning from local roads into highways (i.e., the less important roads merge into

more important roads). Reach [24] was the first algorithm that formalise this idea by identifying

”important” vertices using a reach score. This score function can also serve as a lower bound

to eliminate unimportant vertices during the search phase. Subsequently, Goldberg et al. [69]

introduced the concept of shortcuts (i.e., a single edge represents the path of multiple vertices)

to lower the reach score and enhance the pruning of nodes during the search. The idea of short-

cuts has since become a fundamental component in other hierarchical approaches. Highway

hierarchies [23] take the concept of shortcuts and construct k-level hierarchies, with each level

being a highway representation of the lower-level graph. This allows the search algorithm to

concentrate only on the important higher-level parts of the network during the middle of the

route. Later on, this idea has been generalised into the simpler, faster, and widely used hierar-

chical approach known as contraction hierarchies [22]. Next, we give a detailed description of

the algorithm.

A Contraction Hierarchy (CH) is an augmented multi-level graph that can be exploited to

speed up pathfinding search. Building a CH is a simple process requiring only the repeated

application of a contraction operation to the vertices of the input graph G. In broad strokes:

1. Apply a total lex order L to the vertices of G.

2. W.r.t. L, choose the least vertex v from the graph that has not been previously selected.

3. (Contraction) Add to G a shortcut edge euw between each pair of in-neighbour u and

out-neighbour w of v for which: (i) u and w are both lexically larger than v; and (ii) the

shortest path from u to w passes through v. To reduce the number of shortcuts added

in G, the subpath ⟨u, v, w⟩ should be both unique and optimal. Fewer shortcuts improve

query performance but verifying local optimality requires additional pre-processing time.
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The step 2-3 repeat until every vertex v ∈ V has been contracted. Note that the num-

ber of shortcuts of CH depends on the lex order L. However, computing an optimal order

that minimises the number of shortcuts is NP-hard [75]. Among the many heuristic orders,

Nested Dissection orders (ND-orders), is the most popular and efficient as suggested in [76].

Figure 2.5 shows an example of contraction hierarchies, where we contract a toy graph in al-

phabetical lex order. Note how shortcut edges (dashed) can connect source and destination

faster than would otherwise be possible. Without shortcuts, the optimal path from A to B has

7 edges: ⟨A, D, G, E, J, H, I, B⟩. An equivalent-cost path, with shortcuts, traverses only five edges:

⟨A, D, G, J, I, B⟩.

A core idea of contraction hierarchies is that shortcut edges can bypass one or more inter-

mediate vertices in a single step. However, for each shortcut edge euw and each intermediate

vertex v we have f(v) ≤ f(w); i.e., given a monotonically increasing cost function f , a simple

best-first search will usually expand v before w in order to compute an optimal path. To achieve

a speedup, authors in [22] divide the set of edges E into two as follows:

• E↑ = {euv ∈ E | u <L v}
(i.e., the set of all “up” edges); and

• E↓ = {euv ∈ E | u >L v}
(i.e., the set of all “down” edges).

The following results, paraphrased here, are due to [22].

Lemma 2.1. (ch-path): For every optimal path sp(s, d) in E, there is a cost equivalent ch-path

whose prefix ⟨s, . . . k⟩ is found in E↑ and whose suffix ⟨k . . . d⟩ is found in E↓.

Corollary 2.2. (apex vertex): Every ch-path has a vertex k which is lexically largest among

all vertices on the path.

Following Lemma 2.1, a natural decomposition of the shortest path problem in a contraction

hierarchy is the following: first compute a subpath ⟨s, . . . , k⟩ in E↑; next, compute a second

subpath ⟨k, . . . , d⟩ in E↓. All that remains is to identify a suitable vertex k which minimises

the total distance. BCH is a variation on the bidirectional Dijkstra search that was developed

specifically for solving such problems.

In the forward direction, BCH considers only the outgoing edges in E↑. In the reverse di-

rection, BCH considers only the incoming edges in E↓.
1 Each meeting point of the two search

frontiers corresponds to a tentative shortest path. Unlike standard bidirectional Dijkstra search,

which can be terminated as soon as the sum of the minimum f -values on open lists for both

1Other edges from E, such as incoming up-edges and outgoing down-edges are safely discarded by BCH to
save space.
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Figure 2.6: From the source vertex G, the optimal first move to any vertex coloured red (resp.
purple) is D (resp. E).

directions is no less than the length of the best candidate path, BCH continues until it can prove

the meeting point k minimises the total distance between s and d, i.e., BCH stops when the

minimum f -value on both open lists are at least as large as the best candidate path found so far

(or when both lists are empty, if there is no such path). Finally, BCH unpacks the ch-path and

returns the shortest path sp(s, d). Though simple, BCH remains state of the art for pathfinding

on road networks with millions of vertices [77].

In addition to the contraction hierarchy, the arterial hierarchy [78] improves the worst-case

complexity of the query time for CH, though the improvement is not significant in practice. Core-

based routing [71], on the other hand, focuses on reducing the space complexity by computing

an overlapped core graph that retains only the shortcuts of contracting unimportant vertices.

The goal-directed enhancements, such as landmarks or arc flags, are then computed on this

core graph to speed up the search when it is restricted to the core graph. Similarly, the transit

node routing [73] involves the selection of a subset of transit nodes from the graph and the

precomputation of pairwise distances between these transit nodes. While connecting the source

and destination to transit nodes enables us to efficiently compute the shortest distance, this

approach falls short when it comes to retrieving the complete shortest path.

2.2.3 Oracle-based Algorithms

Preprocessing the input graph can indeed improve the query performance of search-based algo-

rithms, however, these algorithms are still limited by the search process in finding the optimal

path, causing a bottleneck in performance. Oracle-based approaches are another family of algo-

rithms that forgo conventional state-space search and instead extract the shortest paths using

precomputed data. Although oracle-based methods provide ultra-fast answers to the shortest

path queries, they typically require a substantial amount of preprocessing time and memory

to build and store such an oracle. Next, we give an overview of state-of-the-art oracle-based

algorithms.
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Ordering G D A C J E H F B I

G * D D E E E E E E E

J E E E C * E H H H H

I H H H H H H H H B *

Table 2.2: First moves for G, J and I for the example of Figure 2.6

Compressed Path Databases (CPD) [26] are auxiliary data structures that encode and com-

press the first move (equivalently first arc) on the optimal path from each vertex s ∈ V to

every other vertex d ∈ V . Given a weighted graph G (i.e., an example is shown in Figure 2.6),

CPDs are constructed offline using one complete Dijkstra search for each source vertex s ∈ V .

The worst-case complexity is therefore O(|V ||E|+ |V |2 log |V |). However, each Dijkstra search

can be executed in parallel with a potential speedup depending on the number of processors

available on the machine.

• First-Move Tables: With only a small modification to the basic Dijkstra algorithm

(specifically, for each vertex, we maintain the first outgoing arc on the optimal path from

s to this vertex), we compute for each source vertex s ∈ V , a first move table where

fm(s, d) returns a symbol that tells which of the outgoing arcs of s appear on an optimal

path, from s to any d ∈ V . Table 2.2 shows all first moves for source vertices G, J and I

in Figure 2.6. Note that each fm(s, s) is assigned a wildcard symbol [79] “*” (i.e., “don’t

care” symbols) as we never need to look up a move from s to itself.

• Compression: The CPD compresses first-move tables using run-length encoding (RLE)

[27]. RLE compresses a string of symbols into representative sub-strings, called runs.

Each run has two values: a start index and a first-move symbol. E.g., the string C; C;

C; D; D; D, can be compactly represented as two runs: 1C; 4D. In addition to that, the

wildcard symbol “*” is allowed to be compressed with any other preceding or subsequent

symbol. For example, row G in Table 2.2 can be compressed into just two runs: 1D; 5E.

The effectiveness of RLE compression is dependent on the way the candidate vertices are

ordered. Following the suggestion in [80], we use a Depth-First-Search (DFS) ordering of

vertices. Specifically, we run a DFS on a randomly selected vertex and the DFS ordering

corresponds to the order in which these vertices are accessed by the DFS. This ordering

tends to order the vertices that have the same symbol closer to each other which helps

with compression. In Table 2.2, the order of the columns is a DFS visit order in Figure 2.6

starting from vertex G.

• Path Extraction: CPDs can efficiently retrieve optimal paths for any given source-

destination pair within the graph. We denote the function fm(s, d) which extracts from

the database a first-move symbol, from s to d. Each extraction operation fm(s, d) requires

a binary search on the RLE-encoded first-move table of s to find the first-move symbol
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Ordering G D A C J E H F B I

G * G D J E G J H I H

J E G D J * J J H I H

I E G D J H J I H I *

Table 2.3: Reverse First moves for G, J and I for the example of Figure 2.6

to reach d, which runs in O(log n) where n is the number of symbols in it [27]. Once a

first move is extracted, it can be followed to reach a new location. The entire pathfinding

process can thus be implemented in a simple recursion: we extract and follow optimal

moves until the destination is reached.

Reversed Path Databases (RPD) [25] is another variation of CPD. While a CPD stores first

moves, in an RPD, for each s ∈ V , a reverse row RR(s) is computed which stores, for every

d ∈ V , the last move on the shortest path from s to d (i.e., the first vertex on the reversed

path from d to s). Table 2.3 shows all reverse first moves for source vertices G, J and I in

Figure 2.6. Unlike CPD, the compression on RR(s) is not effective. Therefore, RPDs are not

compressed. This allows accessing the first move in O(1). The shortest path from s to d can be

efficiently obtained by recursively obtaining the fm(s, d) using RR(d), i.e., the shortest path can

be extracted using a single row. Note that constructing each reverse row involves conducting a

Dijkstra search while taking into account incoming edges of the static road network, they can

also be computed in parallel with a speedup linear in the number of processors.

Hub Labelling (HL) [81] is the state-of-the-art approach for computing the shortest distance

in road networks. During the preprocessing, hub labelling computes and stores a set of hub

labels H(vj) for each vertex vj ∈ V . Each hub label is a tuple (hi, sdij) ∈ H(vj) which contains:

(i) a hub vertex hi ∈ V ; and (ii) the short distance sdij between hub vertex hi and vj ; The

critical importance is to ensure that the hub labels computed satisfy the coverage property, i.e.,

for every pair of reachable vertices vj ∈ V and vk ∈ V , there must exist a hub vertex hi in both

H(vj) and H(vk), such that hi on the shortest path between vj to vk. To achieve this, the HL

algorithm repeatedly performs a pruned Dijkstra search on the vertices in graph G following a

given lex order L. In each iteration, the pruned Dijkstra search starts from vertex vj , traversing

the road network as a standard Dijkstra search. However, when reaching vertex vk, the search

node is pruned if there is a common hub vertex hi in both H(vj) and H(vk) such that the

tentative distance g(vj , vk) ≥ sdij + sdik. Otherwise, the search continues, and the hub label

(vj , sd(vj , vk)) is added to the label set of vertex vk. Note that, computing the smallest hub

labelling while ensuring the coverage property is NP-hard [82]. Therefore, heuristic approaches

are often used to compute hub labelling. Given the hub labels computed on an input graph G,

the shortest distance between any a pair of (s, d) can be computed as:
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Vertex J I H G F E D C B A

Labels

{J,0} {J,2} {J,1} {J,4} {J,2} {J,2} {J,5} {J,1} {J,5} {J,6}
{I,0} {I,1} {G,0} {I,2} {G,2} {G,1} {I,2} {G,2}

{H,0} {H,1} {D,0} {F,4} {D,1}
{F,0}

Table 2.4: Hub labeling for the graph in Figure 2.6

sd(s, d) = argmin
hi∈H(s)∩H(d)

(sdis + sdit) (2.2)

Computing Shortest Distance. Hub labelling sort labels of each vertex based on the hub

vertices, the shortest distance between s and d can be calculated by scanning over (similar to

the merge phase in sort-merge join) the sorted label set H(s) and H(d), using the equation in

Equation 2.2. The complexity is O(|H(s)|+|H(d)|), where |H(s)| denotes the number of labels in

H(s). Table 2.4 shows hub labels for the graph in Figure 2.6. To compute sd(A, B), the hub labels

of A and B are scanned and the common hub vertices J is found. Thus sd(B, J)+sd(A, J) = 5+6

is returned.

Computing Shortest Path. To enable computing the shortest paths, during the hub

labelling computation, an additional successor vertices are stored in the labels. i.e., (hi, sdij , sij)

where sij is the first vertex on the shortest path from vj to hi. To find the shortest path between

s and d, HL first computes the shortest distance using Equation 2.2 to find the common hub

vertex hi. Then, it retrieves the shortest path from s to hi by recursively following the successor

vertex sis stored in the labels (hi, sdis, sis). The shortest path from d to hi is retrieved similarly.

Note that each retrieval of the next successor vertex requires a linear scan over the label set of

current successor sis. The complexity of this approach is O(N × SP ), where N is the average

label size of each vertex and SP is the length of the shortest path.

Pruned Highway Labelling (PHL) [83] is another popular and efficient approach for hub

labelling. Unlike traditional methods that maintain vertices as hubs, PHL uses highways (i.e.,

path segments) as hubs and stores the distances to them. These highways are derived from

the shortest paths in the input graph and are identified by using the speed information (i.e.,

distance divided by travel time) of the road network. However, PHL has two major restrictions:

(i) the input graph must be an undirected graph; (ii) the input graph must contain distance and

travel data. Recall that the HL is constructed based on the lex order of vertices. Significant

path based Hub Pushing (SHP) [84] generalises the idea of PHL by using a heuristic approach

for ordering vertices when constructing the HL. Similar to a highway, the shortest path is a

“significant path” if it passes by many other shortest paths. To efficiently select vertices on

“significant paths” as hubs, SHP ranks the vertices by multiplying the vertex degree and the
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size difference of its descendants. Though simple, SHP remains the state-of-art ordering scheme

for HL techniques [84] and improves PHL by avoiding these restrictions.

2.2.4 Time-Dependent Scenarios

The time-dependent road network extends the static road network by considering the time-

varying factors that impact road transportation, such as traffic congestion, road closures etc.

Unlike the static road network, the time-dependent road network uses a piecewise-linear function

to model the changing travel times of each edge, allowing for a more accurate representation of

road conditions. Given a source (s), destination (d) and departure time (t), the actual travel

time of each edge depending on its corresponding arrival time, the pathfinding queries find the

fastest path traversing from s to d at departure time t. We formalise the time-dependent road

network as follows:

Let G = (V,E, F, T ) be a directed graph, with vertices V , edges E ⊆ V × V and f ∈ F maps

each edge e ∈ E to a Travel Time Function (TTF) which returns the non-negative travel time

f(t) needed to travel through the edge e for a given specific start time t in the time domain

T . Each directed edge evivj ∈ E with its corresponding TTF fvivj represents the edge that

connects vertex vi to vj . In a road network, we naturally assume that the network G satisfies

the FIFO property (i.e., fvivj (t
′) + t′ ≥ fvivj (t) + t | ∀evivj ∈ E and ∀t′ > t ∈ T ), that is

departing later or waiting at an intermediate vertex cannot result in arriving earlier. Similar to

many existing works [32, 85], we model the TTF as a continuous piece-wise linear function with

the time domain of 24 hours. Figure 2.7 shows an example of a time-dependent network. For

exposition only, we assume the graph G is undirected and only the edges that are shown in red

have non-constant TTF with T = [0, 180). Next, we explain some of the important operations

of TTF:

• Evaluation of f(t) ∈ F normally requires a binary search over the sorted array of inter-

polate points, and runs in O(log(|f |)) where |f | denotes the number of interpolate points

of f . However, we use the bucket-implementation [85], which evaluates f(t) by scanning

only the interpolate points inside the bucket corresponding to t.

• Chaining computes the TTF of a path evivj → evjvk as fvivk(t) = fvjvk(t + fvivj (t)).

We use fvivk = fvivj ◦ fvjvk to denote the chaining. Since chaining two piece-wise linear

functions can only result in a piece-wise linear function, the operation can be computed

in linear time (i.e., O(|fvivj | + |fvjvk |) ). The resultant function fvivk has the number of

interpolate points |fvivk | ≤ |fvivj |+ |fvjvk | with the lower bound min(fvivk) ≥ min(fvivj )+

min(fvjvk).
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Figure 2.7: An example of an undirected time-dependent graph. TTFs of the red edges are
shown below the graph, and the travel cost of the other edges are constant.

• Merging minimises the TTFs f ′
vivj and f ′′

vivj on two parallel edges of evivj while preserving

all the shortest paths in G. The operation fvivj = min(f ′
vivj , f

′′
vivj ) is defined as fvivj (t) =

min{f ′
vivj (t), f

′′
vivj (t)} | ∀t ∈ T . Similar to chaining, this operation also runs in O(|f ′

vivj |+
|f ′′

vivj |) and results in a piece-wise linear TTF.

A path P from source s and destination d is a sequence of vertices ⟨v0, v1, v2, . . . , vk−1, vk⟩,
where k ∈ N+, v0 = s, vk = d, and evivi+1 ∈ E for 0 ≤ i < k. In a time-dependent road network,

the length (travel cost) of path Σ|P | depends on the departure time t ∈ T and Σ|P | = fv0vk(t),

where fv0vk(t) = fv0v1 ◦ fv1v2 . . . ◦ fvk−1vk . Given a departure time t ∈ T , sp(s, d, t) denotes the

shortest path from s to d.

2.2.4.1 Adapting Algorithms for Time-Dependent Road Networks

In a time-dependent road network, we assume the network G satisfies the FIFO property.

Therefore, algorithms such as Dijkstra and A* can be applied directly, with the main difference

being the evaluation of the travel time function during generating the successors. Among the

limited existing research, Nannicini et al. [29] extend the bidirectional A* search with landmarks
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Figure 2.8: From the source vertex H, the first move on the optimal path to any node are A

(red), E(orange) and F (purple).

Ordering H A F J I B G D C E

H * A F F F F F F F E

A H * H H H H H H H H

J F F F * I D D D C E

(i): First Move Table

Ordering H A F J I B G D C E

H H H H F J G D J J H

A A A H F J G D J J H

J F H J J J G D J J J

(ii): Reverse First Move Table

Table 2.5: (i) First moves and (ii) Reverse first moves for H, A and J for the example of
Figure 2.8

to time-dependent scenarios (extending landmarks will be discussed later on). Delling and

Nannicini [30] extend the core-based routing by introducing the idea of contracting edges with

travel time functions. In addition, Delling [31] extends SHARC, a combination of highway

hierarchies and arc flags, to time-dependent scenarios. However, in this case, the arc flags are

calculated to indicate whether an edge appears on the fastest path at any time within the

domain T . Next, we provide the details of algorithms that are highly relevant to our research:

Landmarks [28] have also been extended to generate the admissible heuristic in a time-

dependent road network. Unlike static road networks, a time-dependent graph is a directed

graph with changing travel time, therefore, this requires slight modifications: (i) For each land-

mark l ∈ L, we use the minimum travel time of each edge to compute an array that records a

pair (sd(l, v), sd(v, l)) on each v ∈ V , where sd(l, v) denotes the shortest travel time from l to

v. (ii) The array of tuples is exploited to be the lower bound of sp(vi, vj , t) for ∀t ∈ T , from any

vi to any vj :

landmark(vi, vj) = max
l∈L
{max(sd(vi, l)− sd(vj , l), sd(l, vj)− sd(l, vi))} (2.3)

The shortest travel time pairs in (i) are stored to support the directed graph. The minimum

travel time is considered to lower-bound the actual travel time of each edge, leading to equa-

tion 2.3 based on the triangle inequality. Similar to the static road network, the landmarks are

selected on the border of the graph to provide a stronger estimation.
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Path databases heuristics [48] are another state-of-the-art method that extends the path

oracles to generate admissible heuristics in dynamic environment settings. Similarly, given a

time-dependent graph G, we consider the minimal travel time on each edge of G and build a

CPD or RPD following the same procedure as explained in section 2.2.3. Let cpd(s, d) denote

the optimal path extracted from the CPD between s and d. Then, this path must be no larger

than the shortest travel time paths on G (i.e., Σ|cpd(s, d)| ≤ Σ|sp(s, d, t)| for ∀(s, d) ∈ G and

∀t ∈ T ). Therefore, the first-move oracle defines an admissible heuristic. Figure 2.8 shows an

example, where we construct a CPD (resp. RPD) on a graph with minimal edge weight shown

in Figure 2.7 (i) (resp. Figure 2.7 (ii)). The shortest path extracted from CPD between H to J is

a valid lower bound, i.e., (Σ|cpd(H, J)| = 20) ≤ ({Σ|sp(H, J, t)| | ∀t ∈ T} = [30,40]), similarly for

RPD. Note that, when a path database is used as a heuristic, it needs to continuously extract

the path cpd(s, d) at each node expansion of s. Therefore, a caching strategy is often applied to

cache the distance from every intermediate vertex v to d during the path extraction of cpd(s, d).

This strategy helps avoid repetitive first-move extraction.

Time-dependent Contraction Hierarchies (TCH) [32, 85] extends the Contraction Hierarchies

to find the fastest path in a time-dependent road network. While many of the concepts are

similar, we provide a complete explanation of TCH for the sake of comprehensiveness. Given

a graph G, a TCH can be built by repeatedly applying a contraction operation to v ∈ V . In

broad strokes:

1. Apply a total lex order L to the vertices V of G.

2. W.r.t. L, choose the least vertex v ∈ V that has not been previously contracted.

3. (Contraction) Add to G a shortcut edge euw between each pair of in-neighbour u and out-

neighbour w of v for which: 1) the lex order u and w are larger than v; and 2) ⟨u, v, w⟩
is the shortest path between u and w at some time in T . When adding the shortcut edge

euw, the TTF is computed as fuw = fuv ◦ fvw. However, the parallel edges can exist,

and in this case, we merge existing TTF f ′
uw as fuw = min(f ′

uw, fuv ◦ fvw) and maintain

a middle vertex profile to track the intermediate vertex for the corresponding interval in

TTF.

Fewer shortcuts improve query performance, but computing a lex order L that minimises the

number of shortcuts is NP-hard [75]. Thus, a heuristic order is suggested in [85]. Note that the

contraction operation requires verifying local optimality and can be costly in time-dependent

scenarios, therefore the steps 2-3 are parallelised. For more details of the parallelisation, we

refer the reader to the paper [85]. Consider Figure 2.9 as an example, where we contract the

time-dependent graph shown in Figure 2.7 in alphabetical lex order. The TTF of the shortcut

edge eHJ is computed as fHJ = min(fHE ◦ fEJ, fHF ◦ fFJ) and the corresponding middle vertex

profile is {(0, E), (40, F), (80, E)} which indicates the middle vertices are E, F and E for the time
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Figure 2.9: We show the result for contracting vertices E and F in purple, and D in red. Dashed
edges are the shortcut edges and their corresponding TTFs are shown in the figure below.

period [0, 40),[40, 80) and [80, 180), respectively. Also note, without shortcut edges (dashed),

the optimal path from A to B at time 150 has 6 edges: ⟨A, H, E, J, D, G, B⟩. However, with shortcut

edges, we traverse only four edges: ⟨A, H, J, G, B⟩.

Recall that TCH adds a shortcut edge euw iff both u and w are lexically larger than the

intermediate vertex v, and euw is optimal and equivalent to the path ⟨u, v, w⟩. Therefore, for

every pair of edges (euv, evw), there must exist a cost equivalent up edge euw ↑ (i.e, u <L w) or

down edge euw ↓ (i.e, u >L w), if ⟨u, v, w⟩ is sp(u,w, t) for t ∈ T . Thus, we have the following:

Lemma 2.3. (tch-path): For every optimal path sp(s, d, t) in G, there is a cost equivalent

tch-path ⟨s, . . . k . . . d⟩ whose prefix ⟨s, . . . k⟩ is an up path (i.e., s <L s + 1 <L k and suffix

⟨k . . . d⟩ is a down path (i.e., k >L k + 1 >L d)

Corollary 2.4. (apex vertex): Every tch-path has a vertex k which is lexically largest among

all vertices on the path.

The key idea of TCH is that the shortcut edges can bypass one or more intermediate vertices

in a single step. To achieve a speedup, authors in [85] develop the Bidirectional TCH search

(BTCH) to efficiently find the tch-path, following Lemma 2.3. To support the bidirectional

search, BTCH divides the set of edges E into two as follows:
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• E↑ = {euv ∈ E | u <L v}
(i.e., the set of all “up” edges); and

• E↓ = {euv ∈ E | u >L v}
(i.e., the set of all “down” edges).

Given a source-destination pair (s, d) and departure time t, the main challenge of the bidi-

rectional search is that the backward search is prohibitive in time-dependent scenarios (i.e., we

can not search backward without knowing the arrival time t′). Therefore, BTCH runs in two

phases:

(i) Bidirectional Search: In the forward direction, BTCH runs a time-dependent Dijkstra

search from s, considering only the outgoing edges in E↑. Similar to the static graph, this

Dijkstra search differs mainly in that it considers the TTFs when it generates successors. In

the reverse direction, BTCH performs the backward exploration from d using a static Dijkstra

search, and considers only the lower-bound edge weights of the incoming edges in E↓. We also

maintain U (initially infinity) which is the smallest upper-bound distance of any path from s to

d seen so far by the algorithm. During the backward Dijkstra search, we store each traversed

edge in Etrv and compute the upper bound by taking the maximal value on each edge in E↓.

Whenever the two searches meet at an apex vertex k, we: (i) update U if the upper-bound

distance from s to d via k is smaller than current U ; and (ii) obtain a lower bound lb(s, k, d) for

the path from s to d via k. If lb(s, k, d) ≥ U , we discontinue the search on both sides from k.

Every time the search meets, we also record the apex vertex k in K. The bidirectional search

continues until the minimum f -value on both open lists are no less than U (or when both lists

are empty, if no such path).

(ii) Forward Search: Once the bidirectional search stops, for each recorded apex vertex

k ∈ K and lb(s, k, d) ≤ U , we continue a forward time-dependent Dijkstra search on the edges

Etrv by iteratively inserting k into the queue. This forward search is funnelled into d and

considers only the edges that are previously traversed by the backward search. The search

terminates if d is expanded.

Finally, BTCH unpacks the tch-path using the middle vertex profile maintained on the cor-

responding shortcut edges, and the optimal path sp(s, d, t) is returned. BTCH remains state-

of-the-art for time-dependent routing [86].

2.3 Classic Multi-Agent Pathfinding

The previous sections cover pathfinding in two-dimensional spaces and road networks. Despite

the differences in environments, the main focus remains on finding a path for a single agent
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to travel between two locations, often disregarding other agents that may operate in the same

environment (though not always, as time-dependent road networks consider the effect between

agents as a traffic pattern for each edge). Multi-Agent Pathfinding (MAPF) takes interactions

between agents into account and plans the paths that avoid collisions with other agents and ob-

stacles. In this section, we consider the classic MAPF problem where the underlying workspace

is represented by a four-connected grid map as explained in section 2.1.1. Next, we formalise

the classic MAPF problem.

Following Stern et al. [3], a MAPF instance consists of (i) an input grid map, where each

cell connects to only orthogonal neighbours, and (ii) a set of k agents A = {a1, . . . , ak}. We

represent the grid map as an undirected and unweighted graph G = (V,E) with nodes V and

edges E ⊆ V × V . Each agent ai ∈ A has a unique source (si ∈ V ) and destination (di ∈ V ).

Time is discretised into unit-sized timesteps, and, at each timestep, agents are allowed to move

to an adjacent vertex or else wait at their current location. A path of agent ai is a sequence of

vertices P = ⟨si, . . . , di⟩, indicating the location of ai at each timestep. An agent has reached

its destination if it permanently waits at its destination location and never has to move off to

make way for another agent. The cost of a path P is the number of timesteps (i.e., |P | − 1)

required for an agent to reach the destination location from its source (ignoring wait costs after

reaching). The paths of two agents ai and aj can conflict in two ways: (i) a vertex conflict

⟨ai, aj , vi, t⟩ when agent ai and aj reach the same vertex vi ∈ V at the same timestep t, and

(ii) an edge conflict ⟨ai, aj , vi, vj , t⟩ when two agents ai and aj traverse the same edge evivj ∈ E

from the opposite directions at the same timestep t. A solution is a set of conflict-free paths,

one for each agent. Our objective is to find an optimal solution that minimises the sum of the

individual costs (SIC) of the paths.

In this section, we discuss the existing works related to the classic MAPF problem by cat-

egorising them into three categories: optimal MAPF algorithms, bounded-suboptimal MAPF

algorithms and unbounded-suboptimal MAPF algorithms. We begin by providing an overview

of each type of MAPF algorithm. Given that one of our research objectives is to improve

the state-of-the-art optimal search-based algorithm, Conflict-Based Search (CBS), we will then

present a detailed explanation of the algorithm, along with its recent improvements.

2.3.1 Optimal MAPF Algorithms

The MAPF problem is challenging because it requires consideration of potential collisions that

may occur between multiple agents. Even more challenging is finding an optimal solution

for all agents that optimises the SIC, as this problem is NP-hard [87]. Optimal Multi-Agent

Pathfinding (MAPF) algorithms can be categorised into search-based and compilation-based

algorithms. Search-based algorithms utilise approaches such as joint-state A* search, increasing
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cost tree search, and conflict-based search. On the other hand, compilation-based algorithms

transform the problem into a combinatorial optimisation problem, which is then solved using

an off-the-shelf solver. Next, we present an overview of each type of search-based algorithms,

including their variations, as well as compilation-based algorithms.

Joint-space A* search is a straightforward approach to find the optimal solution for MAPF

by utilising A* search algorithm with a joint-state space. In a joint-state space, each agent

corresponds to a different location among a total of |V | vertices on a grid map. Therefore, the

successors of the A* search correspond to all potential non-collision combinations of actions the

agents can take (i.e., for a four-connected grid map, there are 4k number of successors in the

worst case where k is the number of agents in a MAPF instance). The g-value and h-value

of the A* search is the sum of g-value and h-value for each agent in a search node. Since

the joint-state space grows exponentially with the number of agents, various techniques have

been proposed to eliminate the search space of joint-state A* search. For example, Operator

Decomposition (OD) [88] modifies the joint-state A* search by only changing the position of

one agent at a time. Though this reduces the branching factor, it also increases the search tree

depth substantially. Independence Detection (ID) [88] divides the agents into disjoint subgroups

and solves each subgroup independently. However, it may not work well when the number of

agents is large and partitioning is difficult. Enhanced Partial Expansion (EPEA*) [89] focuses

on reducing the surplus nodes (i.e., the node with the cost larger than optimal cost) of the

joint-state A* search by only generating the successors with f(n) = f ′(n) where f ′(n) is the

minimal f -value in the open list. Sub-dimensional expansion (M*) [90] changes the joint-state

A* search, such that it initially runs an A* search on each individual agent and only locally

increases the dimensionality (i.e., merges the search space) when the search space of one agent

is conflicting with another.

Increasing Cost Tree Search (ICTS) [91] is a two-level search algorithm that improves the

joint-state A* search by limiting the joint-state space to only consider a combination of fixed

cost agents. In the high-level, ICTS searches in an increasing cost tree where each node contains

a set of costs, one for each agent, and a parent node connects to k number of child nodes, each

of which increases the cost of one of k agents by one. When expanding a high-level node, the

lower-level search verifies whether a solution exists in the joint-state space that combines the

potential locations of each agent with its corresponding cost of the high-level node. Sharon

et al. [91] also propose several pruning techniques to quickly skip the high-level nodes that do

not contain a solution, leading to better performance than the joint-state A* search.

Conflict-Based Search (CBS) [33] is another two-level search algorithm that resolves conflicts

by adding constraints and replanning the paths that satisfy the imposed constraints. We give

the details of the CBS algorithm and its recent enhancement in Section 2.3.4. In addition to
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that, CBS has two variations that solve the MAPF optimally. Iterative Deepening CBS (ID-

CBS) [92] instantiates the iterative deepening A* [93] on the high-level search of CBS. This

adaptation allows CBS search to continue running without memory-out failure due to a large

number of high-level search nodes. Meta-Agent CBS (MA-CBS) [94] inherits a similar idea

from independence detection, which groups multiple agents into a sub-problem in the high-

level search of CBS. In general, this approach helps to reduce the branching factor of the CBS

search, but how to more effectively subgroup agents is a challenging task. Unlike the joint-state

search algorithms, the efficiency of CBS algorithms is dependent on the specific conflicts that

occurred in the current plan. Although there are various recent enhancements to joint-state

search algorithms, the CBS family algorithms remain state-of-the-art for search-based MAPF

algorithms.

Compilation-based algorithms are another family of algorithms that solve the MAPF problem

optimally. These algorithms formalise the MAPF problem as a traditional optimisation problem

such as Integer Linear Programming (ILP) problem, Boolean Satisfiability (SAT) problem, Con-

straint Programming (CP) problem etc, and efficiently solve them by using a well-implemented

optimisation solver. For example, ILP has been used to encode a MAPF problem as a network

flow problem with multiple commodities [95] and solved it with an ILP solver. Branch-and-Cut-

and-Price (BCP) [39, 96] is another algorithm based on a widely-used ILP technique, branch and

price, but generalises the idea of CBS to use a search algorithm to plan a single-agent path on

the lower level and ILP solver to assign the paths and resolve the conflicts on the high level. In

addition, MAPF can also be mapped to a SAT problem, such as MDD-SAT [97], which involves

using Boolean variables to represent whether each agent is at each location at each timestep.

SMT-CBS [98] further utilises the satisfiability modulo theories (SMT) to combine the resultant

SAT-based algorithm with CBS. Finally, Lazy-CBS [41] replaces the high-level of CBS with a

depth-first search and adapts the CP approach with no-good learning in order to avoid redun-

dant searching efforts across different branches of CT. Overall, while some compilation-based

approaches [95, 97] can outperform search-based algorithms on small maps, they can not scale

well to larger maps due to the large number of Boolean variables required by their solvers. Other

compilation-based approaches [39, 41, 96, 98] have improved performance, but many of them

rely on or generalise the idea of CBS, making them non-dominated alternatives. Therefore, we

focus on the search-based algorithm CBS in this research.

2.3.2 Bounded Suboptimal MAPF Algorithms

Bounded-suboptimal MAPF algorithms aim to find the solutions within a fixed bound of the

optimal solution, which allows the trade-off between the solutions’ quality and the query per-

formance of the algorithms. Bounded-suboptimal MAPF algorithms often focus on the relative

bound of the suboptimality, that is BS = O× (1+ ϵ), where ϵ is the error bound, BS and O are
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the SIC of bounded-suboptimal and optimal solutions, respectively. In the existing literature,

bounded-suboptimal MAPF algorithms are usually variants of optimal MAPF algorithms, we

briefly review them below.

For joint-space A* search algorithms, Barer et al. [99] extends OD and EPEA* by incorporat-

ing a weighted A* search [100]. The evaluation function f = g+h is modified to f = g+h×(1+ϵ).

By introducing a weight factor to the heuristic value h, the search can potentially bypass large

sections of the state space that are less likely to yield feasible solutions (i.e., search nodes with

low g-values but high h-values). Similar strategies are also employed in inflated M* [90] and

inflated ODrM* [101], where ODrM* is a combination of M* and MA-CBS. For ICTS-based

approaches, Aljalaud and Sturtevant [102] replace the best-first search at the high level with

alternative strategies, such as All-Agent-Costs, where the approach increments the cost of all

agents by one instead of increasing the cost of just one agent. Although the paper lacks experi-

mental results, it highlights an intriguing method for finding suboptimal solutions within a fixed

absolute bound (i.e., BS = O + ϵ). For CBS-based approaches, Weighted CBS (WCBS) [99]

extends the low-level A* search of CBS by using a weighted A* search to increase the heuristic

value. Bounded CBS (BCBS) and Enhanced CBS (ECBS) [99] further improve both lower and

high-level searches of CBS by employing Focal Search [103]. The focal search is a variation

of A* search that aims to find bounded-suboptimal solutions. It utilises two lists of nodes:

open and focal. The open list is the same as in A* search, while the focal list contains

a subset of nodes from the open list. Focal search uses two functions, f1 and f2, where the

focal list includes nodes from the open list such that f1(n) ≤ ϵ × f1min and f2 is utilised

to select which nodes in the focal list to expand. By choosing an appropriate f2, the search

preferentially expands nodes with solutions within the error bound guaranteed by f1. In addi-

tion to ECBS, Explicit Estimation CBS (EECBS) [104] replaces the high-level focal search of

ECBS with Explicit Estimation Search [105], another bounded-suboptimal A* framework that

better incorporates inadmissible heuristics. Flexible EECBS (FEECBS) [106] further improves

the low-level focal search of EECBS by allowing the overall cost (instead of each agent’s cost)

of the paths to be bounded-suboptimal, providing flexibility in distributing the cost differently

according to their needs. Lastly, aside from search-based MAPF algorithms, eSMT-CBS [107]

and eMDD-SAT [108] extend the compilation-based algorithms SMT-CBS and MDD-SAT to

return bounded suboptimal solutions.

2.3.3 Unbounded Suboptimal MAPF Algorithms

Unbounded suboptimal MAPF algorithms typically pay less attention to solution quality, but

instead focus on finding feasible solutions fast. Popular ones in this area are prioritised planning

algorithms, rule-based algorithms, and large neighbour search-based algorithms. We give more

details on each type of algorithm in the following sections.
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Prioritised planning algorithms, as introduced by [109], offer a collision-free solution for multi-

agent pathfinding (MAPF) problems by assigning a specific order to prioritise agents. By

adhering to this order, each agent plans a collision-free path while avoiding conflicts with the

previously planned paths of higher-priority agents. The effectiveness of prioritised planning

algorithms relies heavily on the priority order designated to each agent. This priority order can

be pre-assigned utilising heuristic approaches [110], constraint programming (CP) solvers [111],

and machine learning methods [112]. Alternatively, the priority order can be determined during

execution using search-based algorithms [113], or partially planned for distinct sub-segments of

paths [114]. Though prioritised planning algorithms often run efficiently and scale effectively to

MAPF instances with a large number of agents, a significant drawback of this approach is the

lack of completeness guarantees, i.e., prioritised planning algorithms may not be able to find a

solution for a MAPF instance, even when one exists.

Rule-based algorithms typically solve the MAPF problems in near polynomial time by estab-

lishing pre-determined movement rules for agents. One popular way is to convert the map into

a graph with predefined routes between start and destination of all agents, ensuring a MAPF

solution is explored only within this reduced graph. Numerous approaches have been proposed,

demonstrating that such a graph can be constructed as an acyclic graph (i.e., tree) [115], a

bi-connected graph containing two more vertices than the number of agents [116], and a graph

representing the special topology of the maps [117]. On the other hand, MAPF instances can

also be solved using predefined agent operations, such as “Slide” [118] (under certain assump-

tions) and “Push and Swap” [119, 120]. Variants of “Push and Rotate” include ”Push and

Rotate” [121] and “Push, Swap and Wait” [122]. Due to the popularity and superiority of

“Push and Swap”, this technique has been further enhanced by combining it with prioritised

planning in a method called Priority Inheritance with Backtracking (PIBT) [42, 123, 124]. More

recently, Lazy Constraints Addition Search (LaCAM) [40] has improved upon PIBT by employ-

ing it to guide exhaustive searches. In summary, rule-based algorithms can run extremely fast

(near polynomial time) on even very challenging MAPF instances. However, the solutions they

find are often substantially inferior compared to other MAPF algorithms.

Large Neighbour Search-based algorithms employ a well-established optimisation strategy

known as Large Neighbour Search (LNS). Within the context of the MAPF problem, LNS

can be understood as a framework in which algorithms begin with a current plan containing

paths for all agents. In each iteration, a subgroup of agents is selected to replan their paths to

improve the current plan. This process is repeated until a timeout occurs. The effectiveness of

LNS algorithms relies on the subgroup of agents selected in each iteration, which can often be

achieved using heuristic approaches [43, 125] or machine learning approaches [126]. The overall

LNS strategy can be applied to enhance solution quality [125], given a feasible solution provided

by the suboptimal MAPF algorithms introduced. Alternatively, it can be adapted to repair an

infeasible plan [43], given any unfinished plan returned by any MAPF algorithms introduced.
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The combination of both approaches led to the development of a solver [127], winning the

2020 Flatland challenge [128]. Not only is LNS efficient and effective, but it also provides the

flexibility to be combined with state-of-the-art MAPF algorithms in the field.

2.3.4 Conflict-Based Search and Its Enhancements

Conflict-Based Search (CBS) [33] is a state-of-the-art optimal algorithm for solving MAPF. CBS

runs a two-level search. The high level of CBS focuses on a pair of agents that have at least one

conflict with each other and resolves the conflict by adding constraints. This process involves

building a binary tree called the Constraint Tree (CT). Each high-level CBS node N is a CT

node, which contains:

• a set of constraints N.constraints, in which each constraint ⟨ai, vi, t⟩ (resp. ⟨ai, vi, vj , t⟩)
prohibits agent ai from visiting vertex vi (resp. edge evi,vj ) at timestep t;

• a set of paths N.P (one for each agent), in which each path N.P(ai) is a cost-minimal

path for agent ai that satisfies N.constraints without considering other agents;

• a set of conflicts N.conflicts, where each conflict is either a vertex ⟨ai, aj , vi, t⟩ or edge

conflict ⟨ai, aj , vi, vj , t⟩ between N.P(ai) and N.P(aj); and

• a cost N.cost , which is the SIC of N.P.

To find a conflict-free solution that minimises the SIC, CBS searches in a best-first-search

manner and maintains a queue to prioritise the CT nodes using their costs N.cost . Initially,

the priority queue contains a root CT node with an empty set of constraints, and each path

P ∈ N.P is an optimal path while ignoring other agents. Whenever CBS expands a CT node

N , it selects a conflict between ai and aj from N.conflicts and resolves it by splitting N into two

child CT nodes. In each of the child CT nodes, CBS adds an additional constraint that prohibits

one of the agents from visiting the contested vertex or edge at timestep t. Since the path of

ai (or aj) no longer satisfies the constraints of the child CT node, CBS calls a low-level solver

to replan the path by using a time-space A* search [114]. Once replanned, the conflicts of the

child CT node are updated, and all other paths in N.P remain the same. The search continues

by inserting the child CT nodes to the queue and terminates when it selects for expansion a

CT node N that has no conflicts (i.e., N.conflicts = ∅). The current N.P is a cost-minimal

solution, as CBS guarantees to explore both ways of resolving each conflict. Figure 2.10 (i)

shows an example of a MAPF instance. We show a CT of the CBS search in Figure 2.10 (ii),

where the root CT node contains the shortest path for each agent while ignoring the paths of

the other agents (as shown in Figure 2.10 (i)). In each of the CT nodes, we show the selected

conflict in yellow, as well as the constraints added in red to resolve the conflict of the parent
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(ii)

Figure 2.10: (i) A MAPF instance with three agents. (ii) An example of a CT for the
MAPF instance in (i), In each CT node, we show the selected conflict (yellow), the newly added
constraints (red), and the modified path (green). The CT nodes that contain feasible solutions

are shown in blue.

CT node. Additionally, we highlight the replanned path resulting from the new constraints in

green. Note that, although the CBS search generates CT nodes with conflict-free solutions as

shown in blue, it needs to keep splitting the CT node located at the bottom left in order to

prove optimality (i.e., until the minimal value in the open list is no less than the best solution

cost found so far).

Prioritising and Bypassing Conflicts: Recall that CBS needs to select a conflict from

N.conflicts when generating the child CT nodes. Each split operation is costly and increases

the branching factor of the CBS search. In order to select the most promising conflict to resolve,

Boyarski et al. [129] propose to Prioritise conflicts by sorting N.conflicts into three categories:

• Cardinal conflict, iff replanning the path for any agent in the conflict increases N.cost ;

• Semi-cardinal conflict, iff replanning the path for one involved agent increases N.cost while

others do not;

• Non-cardinal conflict, iff replanning the path for any agent involved in the conflict does

not increase the N.cost ;

CBS builds MDDs to classify conflicts. A Multi-value Decision Diagram (MDD) [91] MDD i

for an agent ai in a CT node N is a Directed Acyclic Graph (DAG) which compactly stores

all cost-minimal paths that satisfy the constraints N.constraints. Let us assume the cost of

N.P(ai) is ci, the MDD i has ci + 1 levels. For each level t from 0 to ci, MDD i contains nodes

that correspond to all possible locations of agent ai at timestep t when agent ai follows a path of



39

V���

V�

d_ d_

(i): Rectangle Conflicts

V���

V�

d_

d_

(ii): Corridor Conflicts

V���V� d_d_

(iii): Target Conflicts

Figure 2.11: Examples of three types of symmetric conflicts between agents a1 and a2.

cost ci that satisfies N.constraints. If MDD i has only one MDD node (v, t) at level t, we call this

node a singleton and all shortest paths of agent ai must go through vertex v at timestep t. e.g.,

the source and destination are singletons, indicating that agent ai occupies the vertex si and di

at timestep 0 and ci, respectively. Building MDD i for an agent ai is simple. We run a breadth-

first search from the source si to explore the nodes that satisfy the constraints N.constraints

within cost ci. Once the search is finished, MDD i only records the partial DAG that reaches

destination di. To classify the conflicts, a vertex conflict ⟨ai, aj , vi, t⟩ is cardinal iff the MDDs

of ai and aj have singletons at depth t, and an edge conflict ⟨ai, aj , vi, vj , t⟩ is cardinal iff both

MDDs have singleton at depth t and t − 1. The semi/non-cardinal conflicts can be identified

analogously. CBS is a best-first search that finds optimal solutions by progressively pushing the

minimal lower bound. Therefore, the conflicts that increase the N.cost are preferably resolved,

i.e., CBS prefers to select a cardinal conflict first, then a semi-cardinal conflict and finally a

non-cardinal conflict.

During node splitting in the CBS algorithm, another way to improve the search efficiency

is to bypass conflicts by modifying the chosen path of one of the agents [129]. Given a CT

node N and its constraints N.constraints, a path Pi is a valid bypass for agent ai, iff (i) Pi

has the same source and destination of ai; (ii) Pi is a cost-equivalent path of N.P(ai) which

satisfies N.constraints; and (iii) replacing N.P(ai) with Pi reduces the total number of conflicts

(i.e.,|N.conflicts|) of N . CBS finds bypasses when generating child CT nodes. Recall that CBS

selects a conflict between two agents ai and aj , and each child CT node replans a path Pi (resp.

Pj) for agent ai (resp. aj) to resolve the conflict. If the replanned path Pi (or Pj) is a valid

bypass, we replace the path of ai (i.e., N.P(ai)) with Pi and remove the generated child CT

nodes without splitting N . Identifying a bypass can resolve a conflict without branching, which

reduces the size of CT.

Symmetry Reasoning: For a pair of agents that are currently in conflict, it is possible

that all cost-minimal paths of two agents are colliding in the same area. Although adding the

standard (vertex or edge) constraints will eventually resolve the conflict, the size of CT can

grow exponentially, which leads to timeout or memory out failures of CBS. We refer to this

type of conflict as symmetric conflict. Symmetry reasoning is a family technique that resolves



40

$ % & ' (

�

�

�

�

�

%�

%�

%�

$�

%�

%�

&�

&�

&�

&�

&�&�

$�

&� '�&�'� %�

'� &� (�

'�

'�

(�

(�

(�

6�

6���

6���

*�

*�

*�

$JHQW�� $JHQW�� $JHQW��

'�

Figure 2.12: Examples of MDDs for three agents shown in Figure 2.10 (i), as well as the
results of mutex propagation between agent a2 with agent a1 and a3. The initial and propagated

mutexes are shown in dashed blue arcs and red solid arcs, respectively.

symmetric conflicts in a single split, which dramatically improves the success rate of CBS. Li

et al. [130, 131] propose a handcrafted approach that categorises the symmetric conflicts into

threes types:

• Rectangle conflicts, where all cost-minimal paths of two agents collide in a rectangle area.

Fig 2.11 (i) shows an example of a rectangle conflict, vanilla CBS resolves this conflict by,

at least, expanding 3 nodes. However, with the width and length of the rectangular area

increasing, the number of nodes expanded by CBS grows exponentially.

• Corridor conflicts, where two agents traverse through a corridor from opposite directions.

Fig 2.11 (ii) shows an example of a corridor conflict with a length equal to 4, vanilla CBS

resolves this conflict by expanding 24+1 = 32 nodes.

• Target conflicts, where one agent traverses through the other agent’s target vertex. Fig 2.11

(iii) shows an example of a target conflict, where the distance between s1 and g2 equal to

3, vanilla CBS resolves the conflict by expanding 3 nodes.

For each type of symmetric conflict, Li et al. [130, 131] propose a customised algorithm

to efficiently detect and classify it into three categories discussed before (e.g., cardinal, semi-

cardinal and non-cardinal). In addition, a symmetry-breaking constraint is designed to enable

CBS to resolve the conflict in a single split while preserving optimality. Later, Li et al. [34]

extend the concept of symmetric conflicts to include (i) the irregular-shaped rectangle conflict,

which is a generalisation of the rectangle conflict, and (ii) the pseudo-corridor conflict, which

occurs in a non-corridor region but behaves like a corridor conflict, as well as (iii) the target

corridor conflict, which arises when the target of an agent is located inside a corridor. For more

details, we refer the reader to the paper [34].
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Mutex2 propagation [35, 132] is another approach that automatically identifies and resolves

symmetric conflicts. Originally, mutex propagation is a popular technique used in AI planning,

such as planning graph [133], state-space planner [134], and improving SAT-based planner [135].

Like many constraint propagation techniques, mutex propagation finds incompatible nodes be-

tween the MDDs of two agents. Given MDDs for two agents, mutex propagation finds two types

of mutexes:

• Initial mutexes: a pair of MDD nodes/edges is an initial mutex iff these two MDD

nodes/edges correspond to a vertex/edge conflict at the same level t.

• Propagated mutexes: a pair of MDD nodes (resp. edges) is a propagated mutex iff they

are at the same level t and all pairs of their parent MDD edges (resp. nodes) are either

initial mutex or propagated mutex.

A pair of MDD nodes is mutex if they are either initial or propagated mutex. In general, the

initial mutexes are detected first and then propagated through MDD to find the propagated

mutexes. Many existing algorithms [35, 136] can detect mutexes between MDDs. We omit the

details of such algorithms. Given two MDD nodes at the same level that are mutex, we have

the following:

Property 2.5. Iff two nodes from different MDDs at the same level are mutex, there exists

no pair of conflict-free paths that traverse through the two nodes and reach their destination

locations at their individual minimum cost [35].

Given the MDDs of two agents, Zhang et al. [35] utilise mutex propagation to identify cardinal

symmetric conflicts. Specifically, a pair of agents has a cardinal symmetric conflict if all pairs

of MDD nodes are mutex at the same level (i.e., there exist no pair of conflict-free paths

for both agents to reach destinations). In this case, the algorithm returns two sets of MDD

nodes to generate symmetric-breaking constraints. Each set consists of the MDD nodes of one

agent that are mutex with the nodes of the other agent. Although mutex propagation can

automatically identify and resolve symmetric conflicts, it detects only cardinal conflicts and

requires higher runtime overhead than handcrafted approaches. Figure 2.12 shows an example

of mutex propagation ofMDD2 withMDD1 andMDD3 for three agents shown in the Figure 2.10

(i). The initial mutexes and propagated mutexes are shown in blue dotted arcs and solid red

arcs, respectively. Although the current path of a2 and a3 are in conflict, the mutex propagation

can not identify any symmetric conflict, because there exists a pair of conflict-free paths between

a2 and a3.

High-level Heuristic (WDG): So far, CBS prioritises the CT nodes usingN.cost . However,

like many other A* searches, the performance of CBS can be significantly improved by using an

2Mutex is a short term for mutual exclusion.
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admissible heuristic h, which prioritises CT nodes based on f = N.cost +h. The first high-level

heuristic of CBS is introduced by Felner et al. [36] which focused on the pairs of agents with

cardinal conflicts (i.e., resolving such conflicts must increase the costs of child CT nodes). Later,

Li et al. [37] improved and extended this heuristic considering all pairs of agents that are in

conflict. Among many heuristics proposed in [37], we explain the leading heuristic, Weighted

Pairwise Dependence Graph (WDG) heuristic.

In order to compute the heuristic for a CT node N , WDG considers all pairs of agents that are

currently in conflict. For each such pair of agents (ai, aj), WDG takes the paths and constraints

of ai and aj in a CT node N and runs a sub-CBS search to solve them as a sub-instance.

Completely solving the sub-instance may be costly and easily dominates runtime. Therefore,

each sub-CBS solver is given a node limit |N |, which only allows the solver to expand at most

|N | CT nodes. When the sub-CBS search concludes, it is easy to see that the increase of the

minimal f -value in the open list ∆ij is a valid lower bound for agent pairs (ai, aj). To further

consider the intersection of pairs of agents, WDG builds a weighted pairwise dependency graph

GD = (VD, ED,WD) for these agent pairs whose ∆ij > 0. Each vertex vi ∈ VD indexes an

agent ai, each edge evivj ∈ ED corresponds to an agent pair (ai, aj), and WD : E → D is a

weight function that maps each edge evivj ∈ ED to ∆ij ∈ D as edge weight. The graph GD is

used to create an integer program to minimise
∑

i xi subject to ∧ijxi + xj ≥ ∆ij , where each

xi represents the increase in length of the current path for agent ai. The optimal value of this

integer program is an admissible heuristic for CT node N . Although computing WDG requires

building GD for each node expanded, most of the edges in GD can be inherited from the parent

CT node.

Though fast and effective, WDG as well as other existing heuristics [36, 137] (except for

the one introduced below) compute the heuristics only by considering the pairs of agents that

are in conflict. Recently, Mogali et al. [138] proposed a Lagrangian-Relax-and-cut-based (LR)

heuristic that reasons about conflicts among groups of three agents. It shows promise that

reasoning beyond pairs of agents can generate better heuristics. However, due to the large

runtime overhead of the LR heuristic, (i) they apply the LR heuristic only at the root CT node,

(ii) they have to limit the maximum cost of the paths, and (iii) the overall speedup is very

limited (e.g., within the given runtime limit, they do not solve more instances than the existing

algorithm).



Chapter 3

Fast Optimal and Bounded

Suboptimal Euclidean Pathfinding

3.1 Overview

In this chapter, we present our techniques for improving the pathfinding queries in Euclidean

space. Our approach combines the strengths of two recent pathfinding techniques: Polyanya [14],

an online mesh-based planner, and Compressed Path Databases (CPDs) [26, 27], a family of

preprocessing-intensive speedup techniques developed for grids and spatial networks. We provide

two versions, one designed for finding optimal paths, and a second for bounded suboptimal

paths. Like many Euclidean pathfinding algorithms, both use a two-step approach involving

offline preprocessing followed by online search. In broad strokes:

• During the offline phase, we preprocess the input mesh to extract a graph of “interesting”

points. We then preprocess the graph to create a CPD: an auxiliary data structure that

stores compressed all-pairs data and, which can be used to efficiently extract optimal paths

between any pair of “interesting points” pi and pj .

• During the online phase, we connect the source and destination points to the “interesting

points” graph. We use the CPD to identify candidate paths. In the optimal algorithm, we

consider paths from each of the |Vs| outgoing successors of the source s to each of the |Vd|
incoming successors of the destination d. In the suboptimal algorithm, we only consider

paths from the nearest “interesting point” to the source to the nearest “interesting point”

to the destination.

For the optimal approach, because each candidate path is a feasible solution, our approach

can provide strong anytime performance and it guarantees to return the optimal path after

43
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Symbol Description
s The source of a pathfinding query.
d The destination of a pathfinding query.
pi A point in arbitrary Euclidean space.
vi A vertex on a polygonal obstacle.
I A contiguous interval (i.e., segment) of an edge of the mesh
ci The centroid of a circle.
δ The radius of a circle.
ϵ The error bound for bounded suboptimal search.
P A path that consists of a sequence of points ⟨p1,p2, · · · , pk⟩.

Σ|P | The cost of a path P .
⊕ A concatenation operator that concatenates two paths Pi and Pj .

sp(s, d) The shortest path from s to d.
ed(pi, pj) The Euclidean distance between two points pi and pj .
fm(pi, pj) A function that extracts the first-move on sp(pi, pj) using CPD where pi and pj ∈ CPD.
cpd(pi, pj) The shortest path sp(pi, pj) extracted using CPD where pi and pj ∈ CPD.
lb(pi, pj) A lower bound on the shortest distance between pi and pj , i.e., lb(pi, pj) ≤ Σ|sp(pi, pj)|.
bsp(s, d) A bounded-suboptimal path between s and d, i.e., Σ|bsp(s, d)| ≤ Σ|sp(s, d)| + ϵ.

Table 3.1: Summary of the notations used in this chapter

considering at most |Vs| × |Vd| possible paths, where |Vs| and |Vd| correspond to the number of

convex vertices visible from source and destination, respectively. For the suboptimal approach,

the whole pathfinding process is completed by considering only one path instead of |Vs| × |Vd|
paths, so it is very fast.

We give a complete description of the new algorithms and a number of additional enhance-

ments that can speed up the optimal search. We then demonstrate effectiveness in a range

of experiments: on maps from real games and in comparison to a range of leading Euclidean

pathfinding algorithms, both optimal and bounded suboptimal, appearing in the recent litera-

ture. For optimal path construction, we show that the new method can be substantially faster:

from a few factors to over one order of magnitude. For computing fast anytime solutions, and

for solutions with bounded suboptimal costs, we show that the speed gains are even larger.

3.2 Preliminaries

In the Euclidean pathfinding problem, we are asked to find point-to-point paths in a continuous

2D workspace which contains polygonal obstacles in fixed positions. Any non-obstacle point

from the workspace is a potential source or destination position, and the objective is to find an

obstacle avoiding, distance minimum path, between pairs of points that are priori unknown. In

this chapter, we follow the definitions and terminologies introduced in Section 2.1, and Table 3.1

summarises the symbols used in this chapter.

As mentioned earlier, our techniques combine the strength of two recent pathfinding tech-

niques: Polyanya [14] and Compressed Path Databases (CPD) [26]. The details of the online
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pathfinding algorithm Polyanya as well as its underlying navigation mesh have been discussed

in Section 2.1.4. On the other hand, CPD is an oracle-based algorithm that was originally

designed for pathfinding in road networks, we have given the description of the algorithm in

Section 2.2.3.

3.3 Optimal Search

Our first contribution is an algorithm for quickly finding optimal Euclidean paths. We examine

the two components of offline preprocessing followed by path extraction.

3.3.1 Offline Preprocessing

We now describe the auxiliary data structures required by our new algorithm and the offline

preprocessing step that constructs them. There are two main steps: constructing a graph

of co-visible convex vertices and building a corresponding CPD. This phase takes as input a

navigation mesh which can be constructed as described in [14].

3.3.1.1 Identifying Co-Visible Vertices

A variety of methods exist for generating a graph of co-visible vertices. All have worst-case

upper bounds of O(n2) where n is the number of vertices in the planar environment. Faster

performance can be achieved in practice by only considering and connecting convex vertices.

Variations of this idea appear many times in the literature and under different names; e.g.

Tangent Graphs [139], Silhouette Points [140] and Sparse Visibility Graphs [15].

We now propose a new efficient algorithm for computing such a Visibility Graph, in two

dimensions, using the Polyanya path planner. The vertex set V of the visibility graph consists

of all convex vertices of the obstacles. In Fig. 3.1, {A, D, G, H, K, L, O} are convex vertices. Other

obstacle vertices (e.g., C) cannot appear on any optimal path, and are dead-end vertices. Next,

for each v ∈ V , we run a modified Polyanya search to find convex visible vertices from v.

Specifically, we modify the Polyanya such that it only generates visible successors and the

search runs in a depth-first search manner without using any heuristic. If a successor’s interval

contains a convex vertex v′, we add an edge evv′ ∈ E, where initially E = ∅. The cost of this

edge is ed(v, v′). This algorithm has the quadratic worst-case but in practice runs much faster.

Consider Fig. 3.1 as an example and assume that the source node is A. The search starts by

generating all the visible successors for the two adjacent polygons that contain A. It cannot

expand further for the successors that are on the obstacles or map boundary (e.g., ([A, B], A),
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Figure 3.1: Green area corresponds to the area visible from the source node A. The first move
on the optimal path from A to any node in the purple (resp. pink) area is D (resp. L).

Ordering A D G H K L O

A * {E ,D} D {E ,H} {E ,K} {E ,L} {E ,O}
D {E ,A} ∗ {E ,G} {E ,H} {E ,K} {E ,L} {E ,O}
G D {E ,D} * {E ,H} {E ,K} {E ,L} {E ,O}

Table 3.2: First moves for A, D and G for the example of Fig. 3.1.

([B, C], A), ([P, O], A) and ([P, Q], A) etc.). Thus, the remaining visible successors are ([D, K], A),

([K, L], A) and ([A, O], A). When we expand the successor ([D, K], A), it finds two visible convex

vertices D and K, and generates the visible successor ([H, K], A). Since it is a depth-first search,

the successor ([H, K], A) is expanded which finds the visible convex vertex H, and generates the

successors ([H, I], A), ([I, J], A) and ([K, J], A) (which are all ignored because they are either on

obstacles or on the map boundary. Similarly, the successors ([K, L], A) and ([A, O], A) are processed

and two visible convex vertices L and O are found by them, respectively. The search terminates

after exploring the area visible from A (green area shown in Fig. 3.1). Thus, this Polyanya

search adds edges from A to each of the convex visible vertices {D, K, H, L, O} into E along with

their corresponding Euclidean distances.

We remark that a previous work [15] used a similar approach to find co-visible vertices but their

searches are conducted using Anya [58]: an optimal any-angle path planner where polygonal

obstacles are rasterised using a grid. Anya searches on a grid map and generates the successors

by considering the adjacent grid row. The search space is explored row-by-row. On the other

hand, Polyanya extends Anya in Euclidean space which searches on the convex polygons of

mesh and explores polygon-by-polygon, hence improves the node expansions by a few factors

and achieves up to one order of magnitude speed up [14]. In experiments, we compare against

this method and we improve it using our more general mesh-based approach.
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3.3.1.2 Building the CPD

Given the graph of co-visible nodes, we construct a corresponding CPD [26]: an all-pairs data

structure that encodes the first move (equivalent first arc) on the optimal path from each node

s ∈ V to every other node d ∈ V .

First-Move Tables: As stated earlier, the first-move table of s stores the first-move symbol

fm(s, d) for every d ∈ V . When s and d are co-visible (i.e., fm(s, d) = d), in addition to storing

the first-move d, we also store a redundant symbol E which represents that s and d are co-visible

(i.e., a direct path from s to d exists). For example, for the first-move from A to D, we store D

as well as E . Another special symbol is (wildcard) “*” symbol which we add for table entries

where s = d, since these entries will never be retrieved. We include the redundant and wildcards

symbols because they substantially improve compression as shown in [79] and explained shortly.

Table 3.2 shows all first moves for source vertices A, D and G in Fig. 3.1.

Compression: We compress first-move tables using run-length encoding (RLE) [27]. To

improve RLE compression we apply several known enhancements [79]. First, we allow the

wildcard symbol ”*” to be compressed with any other preceding or subsequent symbol. Secondly,

for table entries with redundant symbols, we choose the one that produces a longer run. For

example, row A in Table 3.2 can compress into just two runs: 1D; 4E (cf. 3 runs if we choose E
as the symbol for column D).

We use a Depth-First-Search (DFS) ordering of columns as suggested in [80]. In Table 3.2,

the order of the columns is a DFS traversal order of the convex vertices appearing in Fig. 3.1

starting from A.

3.3.2 Online Search

CPDs can efficiently retrieve optimal paths when both source s and destination d are the vertices

of the co-visible graph as discussed in section 3.3.1.2. One of the main challenges for pathfinding

in Euclidean space is that s and d can be arbitrary (i.e., a priori unknown) locations on the

map. To handle such cases we propose to first identify all graph vertices visible from s, denoted

Vs, and all graph vertices visible from d, denoted Vd. We then extract a set of paths, from each

vs ∈ Vs to each vd ∈ Vd. Let cpd(vi, vj) denote an optimal path from vi and vj (extracted via

the CPD). If s and d are not visible to each other, the shortest path (i.e., the one with the

shortest distance) sp from s to d is then

sp(s, d) = argmin{Σ|⟨s, vs⟩ ⊕ cpd(vs, vd)⊕ ⟨vd, d⟩| | vs ∈ Vs, vd ∈ Vd} (3.1)
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Algorithm 1: End Point Search (EPS)

Input: s:source, d:destination, CPD: compressed-path-database
Output: an optimal path from s to d
Initialisation: Vs ← ∅, Vd ← ∅, sp← ⟨⟩, Σ|sp| ← ∞

1 cur ← s; opp← d;
2 while searchs and searchd are not exhausted do
3 Let v be the next visible vertex returned by searchcur;
4 if v = s or v = d then // this implies s and d are co-visible

5 return ⟨s, d⟩;
6 if v ̸= ϕ then // searchcur is not exhausted

7 for each v′ ∈ Vopp do
8 P ← ⟨opp, v′⟩ ⊕ cpd(v′, v)⊕ ⟨v, cur⟩;
9 if Σ|P | ≤ Σ|sp| then

10 sp ← P ;
11 set Σ|sp| as the search bound for both searchs and searchd;

12 Vcur ← Vcur ∪ v;

13 cur, opp← opp, cur;

14 return sp;

In Fig. 3.1, Vs = {D, G, H, K, L} and Vd = {A, O} and the optimal path from s to d can be

obtained by computing the pair-wise optimal paths for each vs ∈ Vs, vd ∈ Vd. As evident from

Eq. (3.1), this basic algorithm extracts at most |Vs| × |Vd| candidate paths using the CPD and

guarantees to return an optimal solution.

3.3.2.1 Incremental Exploration

We now consider a more sophisticated algorithm, End Point Search (EPS), that improves per-

formance by reducing the number of pair-wise optimal paths that must be examined before

guaranteeing optimality. Algorithm 1 provides an overview of the algorithm. Additional prun-

ing rules and optimisations are discussed in Sections 3.3.2.2 and 3.3.2.3.

The key idea of Algorithm 1 is to incrementally explore the visible area from each of s and

d, discovering visible vertices for s and d one by one. We propose to execute two best-first

Polyanya searches, denoted searchs and searchd, each of which is resumable, generates only

visible successors at every expansion step and returns visible vertices as they are found. Vs and

Vd record the visible vertices returned so far by searchs and searchd, respectively. The shortest

path sp and its length Σ|sp| are initialised to be empty and infinity, respectively (we use ← as

an assignment operator and = as an equality condition in the pseudocode).

The algorithm iteratively expands nodes from searchs and searchd in turn until both searches

are exhausted (line 2). We use cur (resp. opp) to denote the current (resp. opposite) direction

in which the search is expanding (line 1); i.e., if cur is source s then opp is destination d and

vice versa. During each iteration, the algorithm incrementally progresses the relevant Polyanya
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search which returns the next visible vertex v (line 3). If the returned vertex is s or d, the search

terminates because s and d are visible from each other and the optimal path is ⟨s, d⟩ (line 5).

If the search is not exhausted (i.e., v is not empty), the algorithm updates the shortest path

sp by considering all paths from visible vertices at the opposite end Vopp to this new vertex v.

Specifically, for each v′ ∈ Vopp, the algorithm uses the CPD to get the optimal path from v′ to v

and updates sp if the new path P is shorter than sp (lines 7 to 10). The search bound for both

searches searchs and searchd is updated to be the shortest distance Σ|sp| found so far (line 11).

The new vertex v is added to the corresponding visible set Vcur. The two ends cur and opp are

then swapped so that the search is alternated between searchs and searchd (line 13). When

the while loop concludes, the algorithm returns the best found path sp.

Note that EPS is a bidirectional path extraction algorithm. In traditional bidirectional search

algorithms [19], the search is guaranteed to meet in the middle and the challenge is to balance

the searching effort between the two sides. In contrast, EPS is a bidirectional path extraction

algorithm that only requires a bidirectional insertion to connect with the CPD nodes. Here, the

main challenge is to avoid |Vs| × |Vd| total path extractions.

3.3.2.2 Pruning Candidate Paths

Recall that, in each iteration, the algorithm obtains a vertex v visible from cur (line 3). We

can immediately discount dead-end vertices, and non-turn [141] vertices. A vertex is called a

dead-end vertex if it cannot lead to anywhere else in the map, e.g., in Fig. 3.2, E is a dead-end

vertex for the source s. A vertex v on a polygon ρ is a non-turn vertex for cur (e.g., s or d)

if v is visible from cur and the ray shot from cur to v enters ρ from v – the non-turn vertex v

does not allow turning around such obstacle. In Fig. 3.2, vertex G is visible from s but there is

no turning point possible since the ray sG continues into the obstacle polygon. In contrast, H is

not a non-turn vertex because the ray from s to it does not enter the polygon (and we can turn

around this obstacle from H).

We can also prune a vertex v which cannot lead to a shorter path than the current bound,

e.g. where ed(s, v) + ed(v, d) ≥ Σ|sp|. For example in Fig. 3.2, we can safely ignore the vertex

K as ed(s, K) + ed(K, d) > Σ|sp|, where Σ|sp| is the length of the optimal path found so far

(highlighted as red). Finally, searchcur can terminate when the top of the open list has an f

value greater than Σ|sp|, since no path using this entry can be shorter than Σ|sp|.

We can avoid extracting paths for pairs (vs ∈ Vs, vd ∈ Vd) if they cannot lead to a shorter

path than the current bound, i.e., ed(s, vs) + ed(vs, vd) + ed(vd, d) > Σ|sp| since ed(vs, vd) is a

lower bound on the shortest path distance Σ|cpd(vs, vd)|. Similarly, we can prune vertex pairs

(vs, vd) where the first move from either end is non-taut, i.e., string pulling results in a shorter

path. For example, let w be the first move on the shortest path from vs to vd. If ⟨s, vs, w⟩ is
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Figure 3.2: An example of End Point Search. The red lines show the optimal path. The area
shown green or yellow corresponds to the space visible from s and d. The green area shows the

space incrementally explored by Polyanya when searchs and searchd are both exhausted.

non-taut then it cannot be part of a shortest path. Similarly, we can prune the vertex pair if

⟨d, vd, w′⟩ is not taut where w′ is the first move on the shortest path from vd to vs. Consider

the example in Fig. 3.2, the first move from H to O is O but ⟨s, H, O⟩ is non-taut, so we do not

need to consider the pair (H,O) further.

3.3.2.3 CPD Cost Caching

In each iteration of the while loop, the algorithm uses the CPD to extract the paths between

a vertex v and every v′ ∈ Vopp (line 8). We use the CPD to extract the optimal path from v′

to v and, for each vertex vk on the extracted path, we cache Σ|cpd(vk, v)|, the shortest path

distance from vk to v. For a subsequent CPD path extraction, if the optimal path from v′′ to

v reaches the vertex vk for which Σ|cpd(vk, v)| is cached, we can use the cached distance to get

the path length from v′′ to v. This simple caching strategy avoids unnecessarily using the CPD

to extract the path that is already cached. Although the algorithm can cache Σ|cpd(vk, v)| for
every v ∈ Vs ∪ Vd, in our implementation, we only cache Σ|cpd(vk, v)| for the vertex v in the

current iteration of the while loop and reuse the space in each iteration for the new v. This

ensures that the caching uses O(1) space for each vertex, i.e., the total space used by the caching

is O(|V |) where |V | is the number of nodes in the co-visible graph. Moreover, we observed that

this caching is already quite effective and caching the distance for each v ∈ Vs ∪ Vd does not

result in a significant further improvement in query performance.

3.3.2.4 Putting it All Together

End Point Search gives us an incremental exploration of the pairs of endpoints on the CPD,

which is reduced by pruning and improved by caching CPD distances, eventually leading to an
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optimal path. Next, we prove the correctness of our approach.

Theorem 3.1. Algorithm 1 returns an optimal path from s to d

Proof. If s and d are visible to each other, one of the two Polyanya searches searchs and searchd

will discover this returning ⟨s, d⟩ at line 5. Otherwise, the shortest path must contain at least

one vertex vs visible from s (i.e., vs ∈ Vs) and at least one vertex vd visible from d (i.e., vd ∈ Vd).

Algorithm 1 explores all paths through vs ∈ Vs and vd ∈ Vd (see Equation (3.1) at the beginning

of Section 3.3.2) except: (i) those vertices that are dead-end, non-turn or have f -values bigger

than current distance Σ|sp| (thus can never be part of the optimal path); (ii) and the vertex pairs

(vs, vd) where the shortest possible path through them, ⟨s, vs⟩ ⊕ cpd(vs, vd) ⊕ ⟨vd, d⟩, is either

non-taut or longer than the current distance Σ|sp|. Hence, the returned path is optimal.

Example 3.1. Fig. 3.2 gives an example of the algorithm in action. End Point Search (EPS)

starts the searchs and returns a visible vertex D (line 3). The non-turn vertex ({G}) and dead-

end vertices ({E, F}) of the polygon containing s are visited by Polyanya but are pruned as

explained in Section 3.3.2.2. Then, the search is swapped and the searchd returns a visible

vertex O after filtering {A} (a non-turn vertex) and {P, Q, R} (dead-end vertices). The CPD is

used to extract the path from D to O, and the shortest path sp (shown red in Fig. 3.2) and search

bound Σ|sp| are updated accordingly (lines 7 - 11). In the next iteration, searchs expands the

successor ([D,K],s) and returns the next visible vertex K. However, the vertex K can be safely

ignored by our distance pruning approach introduced earlier because the path through K (shown

in broken lines) is longer than the current shortest path sp, i.e., ed(s, K)+ed(K, d) > Σ|sp|. After
that, the searchs and searchd are both exhausted as the f -values of the rest of the successors

in their respective queues are bigger than the search bound Σ|sp|, e.g., the successor ([K,H],s) is

never explored by searchs because its f -value ed(s, K) + ed(K, d) > Σ|sp|. Thus, the algorithm

terminates and returns sp (the path shown in red).

3.3.3 Experiments

We run experiments on a variety of grid map benchmarks which are described in [142], including

373 game maps from four sets of maps: DAO (156), DA (67), BG (75), SC (75). All benchmarks

are available from the HOG2 online repository.1 We compare our algorithm with a range of

competitors detailed below:

• Polyanya: [14] is a fast, optimal, online pathfinding algorithm on navigation meshes.

The source code of Polyanya and input navigation mesh are from the publicly available

repository.2

1https://github.com/nathansttt/hog2
2https://bitbucket.org/mlcui1

https://github.com/nathansttt/hog2
https://bitbucket.org/mlcui1
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#M #Q #V #CV
Build Time Raw Memory CPD\E Memory CPD Memory
Avg Max Avg Max Avg Max Avg Max

DAO 156 159k 1727.6 926.5 0.033 0.831 8.012 134.977 0.310 4.605 0.207 3.640
DA 67 68k 1182.9 610.8 0.006 0.048 2.244 20.611 0.115 0.484 0.063 0.254
BG 75 93k 1294.4 667.7 0.011 0.233 3.887 66.064 0.188 1.828 0.119 1.366
SC 75 198k 11487.5 5792.7 0.711 8.463 190.38 2202.23 3.615 19.493 2.325 14.075

Table 3.3: Total number of Maps (#M) and Queries (#Q), average number of vertices (#V)
and convex vertices (#CV) in the maps, average and maximum building time in minutes, and
average and maximum memory before compression (Raw memory), after compression without
using the E symbol (CPD\E memory) and after compression (CPD memory) in MB for the four

benchmark suites.

• ENLSVG: (Edge-N-Level Spare Visibility Graph) [15] is an optimal, off-line pathfinding

algorithm. The implementation of ENLSVG is taken from an online repository.3

• Poly-ENLSVG: is an improvement of the original ENLSVG algorithm which we improve

by applying our Polyanya-based visible vertex retrieval approach (see Section 2.1) for the

insertion phase of ENLSVG. Here, we prune the dead-end and non-turn vertices to further

improve the performance.

• SUB-N-T: (N-level Subgoal graph) [59] is a suboptimal, off-line pathfinding algorithm.

We run Theta-A* [60] on top of N-level subgoal graph, using the publicly available imple-

mentation.4

• TRA*: (Triangulation Reduction A*) [68] is a anytime, optimal pathfinding algorithm

that runs on navigation meshes.

For more details of the competitors, see section 2.1. All algorithms (including the competi-

tor algorithms) are implemented in C++ and compiled with -O3 flag. The experiments are

performed on a 2.6 GHz Intel Core i7 machine with 16GB of RAM and running OSX 10.14.6.

3.3.3.1 CPD Statistics

Table 3.3 shows the average and maximal size of CPD, and building time for the four benchmarks

suites. Clearly, our CPDs are memory efficient and the compression reduces the size of first-

move tables by up to two orders of magnitude. The tables have very small numbers of runs per

entry and hence very fast lookup times. In terms of compression, we also observed that the E
symbol helps to reduce the size of CPDs by 20% – 50% on average and, for some of the maps,

we observed that the E symbol reduces the size by a few factors. In games, it is common to treat

all the maps for one game together. Although the raw memory of the first move table of one

3https://github.com/Ohohcakester
4http://idm-lab.org/anyangle

https://github.com/Ohohcakester
http://idm-lab.org/anyangle
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Figure 3.3: Runtime comparison on the four benchmarks. The x-axis shows the percentile
ranks of queries in number of node expansions needed by A* search to solve them.

Total Poly-ENLSVG EPS
|Vs| |Vd| |Vs| |Vd| |Vs| |Vd| #Paths #FM

DAO 69.324 71.495 19.778 19.987 15.108 14.955 5.094 329.463
DA 46.171 45.707 13.202 12.922 10.779 10.755 2.470 144.872
BG 51.926 49.175 15.629 14.335 9.445 9.226 2.707 98.955
SC 180.013 178.874 45.889 45.356 29.819 29.707 4.028 976.194

Table 3.4: |Vs| (resp. |Vd|) denotes the average number of vertices visible from s (resp. d)
considered by an algorithm to obtain the results. Total includes all visible vertices for s or d
without any pruning. For EPS, we also show the average number of path extractions (#Paths)

and first move extractions (#FM) from the CPD.

map may be affordable, it may not be feasible to store the raw tables of all the maps of a game

in the main memory (e.g., the sum of raw memory for SC benchmark maps is around 14GB in

total). Our CPDs are cheap to build, and for most of the maps can be computed within a few

minutes. Note that the CPDs are built on a 12 core Macbook Pro laptop and the performance

would be better/worse if more/less processors are available.

3.3.3.2 Query Processing Time

In Fig. 3.3, we compare the query processing time for our approach against the competitors.

We sort the queries by the number of node expansions required by the standard A* search to

solve them (which is a proxy for how challenging a query is) and the x-axis corresponds to the

percentile ranks of queries in this order. Fig. 3.3 shows that EPS significantly outperforms the

competitors on all four benchmarks especially when the queries are more challenging. Note that

the y-axis scale is logarithmic. EPS is around 2-4 times faster than SUB-N-T (which does not

guarantee optimal solutions) and 2-5 times faster than Poly-ENSLVG. Polyanya is faster than

EPS for the less challenging queries because, for such queries, s and d are close (and often visible

from each other) and the dominant cost for EPS is the two incremental Polyanya searches from

s and d. For challenging queries, EPS is more than an order of magnitude faster than Polyanya.

Table 3.4 reports the average number of the vertices visible from s and d expanded by Poly-

ENLSVG and EPS after pruning non-turn and dead-end vertices. Both algorithms significantly
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Algorithm EPS No Caching & Pruning Cost Caching Only Pruning Only Visible First

map #FM Time #FM Time #FM Time #FM Time #FM Time

DAO 329.46 23.90 23029.61 309.09 1981.00 50.34 363.92 24.51 335.01 29.67
DA2 144.87 14.18 6830.88 93.20 874.53 24.64 149.62 14.97 148.14 16.91
BG 98.95 12.29 2684.69 48.73 499.16 20.41 100.19 12.66 110.23 17.85
SC1 976.19 61.32 85617.37 1232.71 6298.06 177.68 994.95 62.37 1084.39 82.89

Table 3.5: Average query processing time (µs) and number of first move extractions (#FM)
of our proposed EPS approach. We report results for each different pruning strategy.

reduce the number of visible vertices expanded. Since EPS makes use of the search bound

Σ|sp| to restrict the Polyanya search, it expands a smaller number of visible vertices than Poly-

ENLSVG especially for BG and SC benchmarks. Also, note that the number of path extractions

by EPS is much smaller than |Vs| × |Vd| since path pruning can avoid considering many of

them. We remark that most of the first-move extractions (#FM) are incurred for non-taut

pruning, e.g., to determine whether a path connecting v′ ∈ Vopp to v ∈ Vcur is non-taut from

the opposite end opp, we need to get the first-move vi from v′ to v and then check whether

⟨opp, v′, vi⟩ is non-taut or not. Similarly, to check whether the path is non-taut from the cur

end, we need to extract the first-move vj from v to v′ and check whether ⟨cur, v, vj⟩ is non-

taut or not. Although this non-taut pruning requires first-move extractions, overall it improves

the performance as it reduces the number of paths extracted (#Paths) by EPS (which in turn

reduces the overall number of first-move extractions needed to extract the paths). Also, we

found that our previous implementation of EPS reported in [45] applied non-taut pruning only

from the opposite end (opp). In this extended version, we updated the implementation by also

applying non-taut pruning from the current end (cur) which significantly reduced both the

number of paths and first-moves considered by EPS, resulting in an improved performance.

3.3.3.3 Pruning Strategies

In Table 3.5, we show the average number of first move extractions and query processing time

over four benchmark suites for: our final algorithm (EPS); we omit both pruning and caching

(No Caching & Pruning); we use only cost caching but not pruning (Cost Caching Only); we

use only pruning but not cost caching (Pruning Only); and we apply both pruning and caching

but we first retrieve all visible vertices w.r.t. s and d (Visible First) instead of incrementally

exploring them. Clearly the reduction in search is significant and Pruning is the most important

enhancement. Among the many ingredients of the Pruning techniques, we also observe that

the non-taut path pruning is the most significant one. By performing non-taut path pruning

on both ends, it allows the search to filter out most suboptimal candidate paths and quickly

leads to the optimal one. On the other hand, Cost Caching Only essentially considers all the

possible solutions and achieves a speedup vs. the baseline (i.e., No Caching & Pruning) by a
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few factors. Visible First requires the full insertions (i.e., finding all the visible vertices) which

is time-consuming, thus runs slower than EPS.

3.3.3.4 Anytime Search

In time-constrained applications (e.g., computer games), anytime pathfinding is often desirable

which returns a valid but potentially suboptimal path as soon as possible before progressively

optimising it until an optimal path is found. This motivates us to consider EPS as an anytime

search algorithm. We begin with evaluating the anytime behaviour of EPS. In Fig. 3.4 (i), we

show the average runtime of EPS to find: the first valid path (shown as First solution); the first

path with length within a certain factor Q of the optimal path length (shown as Q = 1.xx);

and the guaranteed optimal path (i.e., when EPS terminates). Here, Q = 1.00 is the time taken

by EPS until it happens to discover the optimal path (although it cannot terminate because

it cannot yet guarantee the optimality of this path). Recall that EPS makes use of pruning

techniques to eliminate the candidate paths that are found to be non-optimal. Although this

improves the runtime of EPS to find the optimal path, it adversely affects the performance

of EPS for anytime search (e.g., the first valid path is found later as several candidate paths

may have been pruned). This further motivates us to consider another variation of EPS for

anytime search, where we consider all candidate paths and only use cost caching to improve the

efficiency. We denote this as EPS (Cost Caching Only). Fig. 3.4 (ii) shows anytime search for

EPS (Cost Caching Only). It is clear that EPS (Cost Caching Only) demonstrates excellent

anytime behaviour, e.g., it finds the first valid path within 5µs and a path with Q = 1.10 (a

path with length at most 10% longer than that of the optimal path) within 10µs. However,

note that EPS (Cost Caching Only) understandably runs slower than EPS for the optimal path

search (i.e., Provably Optimal) which demonstrates that the pruning rules provide a tradeoff

between optimal search and anytime search.

In Fig. 3.5 (i) and (ii), we show the speedup of anytime search compared to A* search for EPS

and EPS (Cost Caching Only), respectively. Fig. 3.5 (iii) shows a graph reproduced from [68]

showing similar comparison for TRA* anytime search, a popular mesh-based planner, which

aims at finding the first solution fast. It can be seen that the speedup over A* search provided

by EPS(Cost Caching Only) is significantly bigger than those achieved by TRA*. For example,

to find the first solution for queries with path length around 500, EPS(Cost Caching Only) is

around 1000 times faster than A* whereas TRA* is around 180 times faster than A*. EPS

provides a bigger speed up over A* compared to TRA* for queries with longer paths, but a

smaller speed up for the shorter queries. This is mainly because EPS focuses on finding the

optimal solution fast and prunes many candidate paths which may result in a delay in finding

the first solution.
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Figure 3.4: (i) EPS and (ii) EPS (Cost Caching Only) anytime behaviour. The x-axis is
the same as in Fig. 3.3. The y-axis shows the average runtime when EPS finds the first path
with length within a certain factor Q of optimal path length (i.e., 1.00, 1.01, 1.05 and 1.10).
Q = 1.0 is the time when EPS happens to discover the optimal path, but cannot guarantee its

optimality. The provably optimal path is the guaranteed optimal path at termination.

0 100 200 300 400 500

A* path length

0

50

100

150

200

250

ti
me
 r

at
io

Median Speedup over A*

Provably Optimal
First solution
Q = 1.10
Q = 1.05
Q = 1.01
Q = 1.00
Polyanya

(i): EPS

0 100 200 300 400 500

A* path length

0

200

400

600

800

1000

ti
me
 r

at
io

Median Speedup over A*

Provably Optimal
First solution
Q = 1.10
Q = 1.05
Q = 1.01
Q = 1.00
Polyanya

(ii): EPS (Cost Caching Only) (iii): TRA*

Figure 3.5: Speedup of (i) EPS and (ii) EPS (Cost Caching Only) over A* search for finding
solutions of different quality on benchmark suite BG, and a reproduced graph for the same
experiment for (iii) TRA* where (F = 1) represents the query performance that TRA* finds

the first solution
.

3.4 Bounded Suboptimal Search

In this section, we present techniques to find a bounded suboptimal path. We focus on an

absolute bound on the suboptimality, that is, Σ|bsp(s, d)| ≤ Σ|sp(s, d)|+ ϵ where ϵ is the error

bound, Σ|bsp(s, d)| is the length of the bounded suboptimal path between s and d returned by

our algorithm and Σ|sp(s, d)| is the shortest path distance between s and d. First, we show how
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to modify EPS to opportunistically terminate early when it finds a bounded suboptimal path.

We then describe a search free method that builds a bounded suboptimal path using a larger

CPD.

3.4.1 Bounded Suboptimal EPS Search

For efficient suboptimal search, it is important that the search can be terminated as soon as

we find a candidate path that is within the bound Σ|sp(s, d)| + ϵ. Therefore, each candidate

path found by the EPS becomes important which motives us to consider EPS (Cost Caching

Only) for the suboptimal search; i.e., we consider all possible solutions found by EPS without

applying our pruning rules and apply only the cost caching to improve the performance. Let

lb(s, d) be a lower bound on the length of the shortest path between s and d. EPS can terminate

as soon as it finds a path bsp(s, d) such that Σ|bsp(s, d)| ≤ lb(s, d) + ϵ. Note that, given the

lower bound, EPS can also be used to obtain a path with a relative bound by terminating EPS

when Σ|bsp(s, d)| ≤ lb(s, d)× (1 + ϵ). One can use the Euclidean distance to obtain lb(s, d) but

it is not likely to be very effective. We propose a more effective lower bound as described below.

Recall that EPS uses CPD to compute the shortest distance between vs ∈ Vs and vd ∈ Vd

denoted as Σ|cpd(vs, vd)| where vs is visible from s and vd is visible from d. Using the tri-

angle inequality, it is easy to show that Σ|cpd(vs, vd)| −ed(s, vs) − ed(d, vd) ≤ Σ|sp(s, d)|, i.e.,
Σ|cpd(vs, vd)| −ed(s, vs) − ed(d, vd) is a valid lower bound on the shortest distance. Whenever

EPS uses CPD to compute the shortest distance between a pair of vertices (at line 8 in Algo-

rithm 1), we compute the lower bound for the pair. The algorithm maintains lb(s, d) to be the

largest lower bound computed so far. Specifically, we initialise the lb(s, d) to be the Euclidean

distance ed(s, d), let Vsd denotes the set of (vs, vd) pairs for which EPS has computed the

shortest distance using CPD. Then, lb(s, d) = max(lb(s, d), argmax(vs,vd)∈Vsd
Σ|cpd(vs, vd)| −

ed(s, vs)− ed(d, vd)).

Consider the example of Fig. 3.6 (ii) and assume that EPS uses CPD to compute the shortest

distances between the pair of vertices (D,c′9) and (E,P). Then, lb(s, d) = Σ|cpd(P, E)| − ed(s, E)−
ed(d, P) because the pair (E,P) generates a better (larger) lower bound than that of (D,c′9). For

the rest of the paper, we denote the bounded (S)uboptimal EPS as SEPS.

3.4.2 Centroid-based Path Extraction

Although our SEPS may terminate earlier to find a path within a given bound ϵ, it still requires

searching for the endpoints and computing distances between multiple pairs of vertices using

CPD, which may be inefficient. This motivates the Centroid-based Path Extraction (CPE)

algorithm, a search-free algorithm that provides a bounded suboptimal path by using the CPD
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Figure 3.6: (i) shows an example of our hexagonal tiling approach for a given polygon, where
c1 - c′9 (shown in red) are the centroids selected for building CPD; and (ii) shows a partial
example with centroids created for central polygon according to (i). Green area corresponds to
the area visible from the source node A. The first move on the optimal path from A to any node

in the purple (resp. pink) area is D (resp. c′7).

to extract the path between only a single pair of points. The key idea of this algorithm is to fill in

the navigation mesh with a set of candidate nodes, called centroids, such that for every point p

in the space there exists a centroid visible from p and within distance δ = ϵ/4. Then, first-move

tables are created using these centroids which are compressed to obtain a centroid-based CPD.

To compute the shortest path, we find a centroid cs (resp. cd) that is within distance δ from

s (resp. d) and use the CPD to compute the shortest path between cs and cd. We show that

the path ⟨s, cs, cd, d⟩ is within the absolute bound ϵ. The path is further refined using string

pulling.

3.4.2.1 Building the Centroid-based CPD

We need to fill each polygon of the navigation mesh with centroids such that the circles centred

at these centroids with radii δ cover every point in the polygon. The main objective here is to

cover the polygon with a minimal number of such circles. This problem belongs to the class

of covering problems, many of which are shown to be NP-Complete [143]. Next, we describe a

greedy algorithm (Algorithm 2) based on hexagon tiling.

First, we create a set of candidate nodes CN which will be used for CPD construction.

CN is initially empty and the algorithm iteratively accesses each traversable polygon ρ of the

navigation mesh (line 1) to populate CN as follows. Let R be the minimum bounding rectangle

of the polygon. We use hexagonal tiling to cover the rectangle R such that the circumradius

of each hexagon (i.e., the radius of its circumscribing circle) is δ, e.g., see the hexagon tiling in

Fig. 3.6 (i). Since these hexagons completely cover the polygon, their circumscribing circles also

completely cover the polygon. For each hexagon, we insert its centroid ci in CN if the centroid
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Algorithm 2: Centroid-based CPD Construction

Input : Navigation mesh
Output : A Centroid-based CPD
Initialisation: CN ← ∅

1 for each traversable polygon ρ of the mesh do
2 R← minimum bounding rectangle of ρ;
3 for each hexagon of the hexagonal tiling of R do
4 ci ← centroid of the hexagon;
5 if ci is inside ρ then
6 CN ← CN ∪ ci;

7 if the hexagon overlaps ρ but ci is outside ρ then
8 c′i ← closest point of ρ from ci;
9 CN ← CN ∪ c′i;

10 insert convex vertices of ρ in CN if not already present;

11 construct a CPD using CN as candidate nodes and return;

is within the polygon ρ (line 6), e.g., in Fig. 3.6 (i), c1, c2, c5, and c6 are inside ρ and inserted

in CN . If the hexagon overlaps ρ but its centre ci is outside ρ, we find the closest point from

ci on ρ (denoted c′i) and insert it in CN , e.g., c′3, c
′
4, c

′
7, c

′
8 and c′9 in Fig. 3.6 (i) are inserted in

CN . It is easy to show that the circles centred at these moved centroids still completely cover

the polygon. Finally, all convex vertices of ρ are inserted in CN if not already present (line 10).

In Fig. 3.6 (ii), A, D and K are inserted.

Once all traversable polygons are processed as described above, a CPD is constructed using

the set of candidate nodes CN (line 11) by following the same procedure as described in section

3.3.1.2. E.g., in Fig. 3.6 (ii) CN = {c1, c2, c′3, c′4, c5, c6, c′7, c′8, c′9, A, D, K}, the vertex C is excluded

as it is a non-convex vertex. Hereafter, we use “centroid” to refer to candidate nodes in CN .

Note that this CPD stores first moves from each centroid to every other centroid in CN , and

only the convex vertices can be the first moves between any pair of centroids. Also, if two

centroids are visible from each other, E may be used as the first move. As shown later in our

experimental study (Table 3.6), this results in a pretty good compression and reduces the space

by up to two orders of magnitude. This is because the symbols in the first move tables are

either convex vertices of the navigation mesh or E .

3.4.2.2 Online Search

Algorithm 3 outline the pseudocode of our CPE algorithm. First, we find the centroids cs and

cd which are the closest centroids to s and d, respectively. Different approaches may be used to

achieve this. We implement a grid-based fetching approach. Specifically, during pre-processing,

we use a grid for each polygon in the navigation mesh where each cell of the grid stores every

centroid of the polygon whose circle overlaps it. During the online search, we identify the grid
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Algorithm 3: Centroid-based Path Extraction

Input : s: source, d: destination, CPD: compressed-path-database
Output : a bounded suboptimal path from s to d

1 cs ← getClosestCentroid(s);
2 cd ← getClosestCentroid(d);
3 sp(cs, cd)← cpd(cs, cd);
4 refine the path sp(s, cs)⊕ sp(cs, cd)⊕ sp(cd, d) and return

cell containing s (resp. d) and find the closest centroid recorded in this cell, which is in the

same polygon as s (resp. d). The lookup time is linear in the number of centroids that overlap

this grid cell.

Once cs and cd are obtained, we compute the shortest path between cs and cd using the CPD.

Since both cs and cd are nodes in CPD, the number of CPD look ups required to extract this

path is linear in the number of vertices on the shortest path between cs and cd. Then, we obtain

sp(s, cs) ⊕ sp(cs, cd) ⊕ sp(cd, d) where sp(s, d) denote the shortest path from s to d and ⊕ is a

concatenation operator.

Theorem 3.2. If the centroid-based CPD is constructed using δ = ϵ/4 then length of sp(s, cs)⊕
sp(cs, cd)⊕ sp(cd, d) is at most Σ|sp(s, d)|+ ϵ.

Proof. We show that the length of the path, Σ|bsp(s, d)| = ed(s, cs) + Σ|cpd(cs, cd)|+ ed(cd, d),

is at most Σ|sp(s, d)| + ϵ. Due to the triangle inequality, we have Σ|cpd(cs, cd)| ≤ ed(cs, s) +

Σ|sp(s, d)|+ ed(d, cd). Therefore, we have Σ|bsp(s, d)| ≤ 2 · ed(s, cs) + Σ|sp(s, d)|+ 2 · ed(cd, d).
The hexagon tiling ensures that the circles centred at all centroids with radii δ cover every point

in the map. Hence, for any points p, its closest centroid is no further than δ, i.e., ed(s, cs) ≤ δ

and ed(cd, d) ≤ δ. Therefore, we have Σ|bsp(s, d)| ≤ Σ|sp(s, d)|+ 4δ ≤ Σ|sp(s, d)|+ ϵ.

Consider the example of Fig. 3.7. We first get the closest centroids c18 and c13 from s and

d, respectively. Then, the centroid-based CPD is used to extract an optimal path from c18 to

c13 (i.e., ⟨c18, O, c13⟩ ). The bounded suboptimal path is then ⟨s, c18, O, c13, d⟩ (shown using blue

lines in the figure).

Path Refinement: Although the path generated by the approach described earlier is bounded,

we can further improve the path quality by string pulling. We describe how to refine the path

from the source end. Let v be the first vertex after cs on the unrefined path sp(s, cs)⊕sp(cs, cd)⊕
sp(cd, d). We use string pulling to refine the subpath ⟨s, cs, v⟩. To implement the string pulling,

we use a combination of the funnel algorithm [67] and our CPD. Specifically, we use the funnel

algorithm to find the first turning point p on the refined path from s to v. Since p must be a

vertex in the CPD, we can use the CPD to obtain the optimal path from p to v. Thus, the
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Figure 3.7: An example of Centroid Path Extraction (CPE) that runs on a centroid-based
CPD with δ = 3. The bounded suboptimal path found by CPE is shown as blue. The final

refined path of CPE, as well as the optimal path between s to d, are shown as red.

subpath ⟨s, cs, v⟩ is refined as sp(s, p) ⊕ sp(p, v). After the path is refined, we use a similar

approach to refine the path from the destination end.

To find the first turning point p from s to v, the funnel algorithm iteratively accesses the mesh

edges that intersect with the subpath ⟨s, cs, v⟩ in this order (from s to v). It also maintains

a maximal visible interval I = [vl, vr] where vl and vr correspond to the left and right most

vertices, respectively, visible from s through the accessed edge. The algorithm terminates when

the accessed edge is completely invisible from s via I and returns vl (resp. vr) if the invisible

edge is on the left (resp. right) of I = [vl, vr].

In the example of Fig. 3.7, the blue path is refined as follows. The first vertex on the blue

path after c18 is O. Therefore, we use string pulling to refine the subpath ⟨s, c18, O⟩. The funnel

algorithm follows the subpath ⟨s, c18, O⟩ and finds intersected mesh edges DG, DK and AO in

this order. The algorithm initialises the maximal visible (from s) interval I as [D, G]. When it

processes the next intersecting edge DK, it updates I to be [D, K] since the whole edge is visible

from s. It then proceeds to process the edge AO. Since AO is completely invisible from s via

I = [D, K] and AO is towards the left of I (i.e., node D), the funnel algorithm returns D as the

first turning point on the path from s to O. We use the CPD to compute the path from D to

O which happens to be ⟨D, O⟩. Therefore, the subpath ⟨s, c18, O⟩ is refined to ⟨s, D, O⟩. Similarly,

the subpath from the destination end (i.e., ⟨d, c13, O⟩) is refined to ⟨d, O⟩. Thus, the final refined
path is ⟨s, D, O, d⟩ (shown using red lines in the figure).

3.4.3 Experiments

We run experiments on the same benchmarks and machine as described in section 3.3.3. We

compare our suboptimal algorithms (SEPS and CPE) with SUB-N-T [59] (briefly described in
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Section 3.3.3). We also compare with SUB-N-A [59] which is the same as SUB-N-T except

that it uses A* instead of Theta-A*. For our SEPS, we refine the path by using the same path

refinement technique of CPE. i.e., given a path sp(s, vs)⊕sp(vs, vd)⊕sp(vd, d) returned by SEPS

and let v be the first turning vertex after vs, we refine the subpath ⟨s, vs, v⟩ if it is not taut. We

refine the path in a similar way for the destination end. For both SUB-N-T and SUB-N-A, as

suggested in [59], we use path smoothing to improve the path quality.

3.4.3.1 Centroid-based CPD Statistics

In order to construct them faster, our centroid-based CPDs were built on 32 cores Nectar

research cloud with 64GB of RAM and running Ubuntu 18.04 LTS (Bionic) amd64. Table 3.6

shows the average and maximal number of centroids, the raw size of the first move tables (e.g.,

without compression), as well as the size of the CPD with (i.e., M) or without E (i.e., M \ E)
symbols, and its building time for the four benchmark suites. Clearly, our centroid-based CPDs

are cheap to build and memory efficient for large radii (i.e., δ = 4, 8). On the other hand, when

the radius is small (i.e., δ = 1, 2), our centroid-based CPDs require more pre-processing time

and space. In later experiments, we will show that the variation of radius in the centroid-based

CPDs has only a minor effect on the running time of our CPE algorithm, but may result in

worse path quality for larger radius. Therefore, there is a trade-off between the sub-optimality

requirements and the memory limitations and a decision regarding the radius can be made

considering the specific requirements of the application.

Compared with the raw memory, our CPD compression reduces the size of the first move

tables by up to five hundred times, and allows CPDs even with a small radius (i.e., δ = 1 or 2)

to fit into the main memory of modern devices. In addition, we also observe that the E symbols

significantly improve the size by a few factors on average, especially when the radius is small

(i.e., δ = 1 or 2), because there exists many centroids that are co-visible and without the E
symbols, they do not compress well.

3.4.3.2 Query Processing Time

In Table 3.7, we compare the average query processing time for our CPE algorithm using

different radii (i.e., δ = 1, 2, 4, and 8) against the competitors. Table 3.7 shows that CPE

significantly outperforms all competitors in all settings. Specifically, CPE is around one order

of magnitude faster than SUB-N-T, SUB-N-A and optimal EPS, and is several times faster than

the suboptimal EPS, i.e., SEPS(ϵ=32), SEPS(ϵ = 8%). The SEPS with relative bound ϵ = 8%

matches the same sub-optimality with SUB-N-T and SUB-N-A, because the shortest grid paths

are at most 8% longer than the optimal any-angle path [13]. We also observe that the query

processing time of CPE is not significantly affected with the change in δ. This is because CPE
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δ CPE(δ=1) CPE(δ=2) CPE(δ=4) CPE(δ=8)

map stat Avg Max Avg Max Avg Max Avg Max

DAO C 14294.705 87898 5577.500 34404 3129.910 19059 2341.621 14079
T 1.109 29.474 0.178 4.662 0.061 1.486 0.036 0.873
R 1961.839 30904.233 293.112 4734.540 90.923 1452.981 50.574 792.872
M\E 122.745 1900.786 15.885 208.670 3.831 53.326 1.688 23.585
M 27.318 536.143 6.467 120.143 2.308 38.942 1.213 19.043

DA2 C 10557.328 29008 4094.597 11701 2211.462 7343 1608.164 5959
T 0.251 2.120 0.042 0.431 0.014 0.149 0.009 0.130
R 651.578 3365.856 97.233 547.653 28.752 215.678 15.664 142.038
M\E 40.726 189.284 5.561 21.793 1.382 5.593 0.627 2.768
M 7.921 30.164 2.033 7.231 0.762 3.018 0.418 1.780

BG C 36570.453 94750 11590.760 31316 4511.653 15998 2449.186 11423
T 2.763 26.548 0.250 2.080 0.047 0.589 0.019 0.332
R 6100.325 35910.250 619.045 3922.767 102.595 1023.744 37.330 521.939
M\E 723.109 2049.922 142.178 1943.864 15.081 153.247 2.858 14.774
M 74.253 442.378 14.857 67.309 3.807 19.536 1.390 10.161

SC C 149261.360 469291 52441.946 173836 25505.546 92309 17263.480 66775
T 130.440 1013.990 13.255 98.862 2.836 25.950 1.284 13.265
R 114718.511 880936.170 14302.496 120875.819 3476.542 34083.805 1638.570 17835.602
M\E 1061.652 2099.440 502.036 2017.235 92.047 397.907 31.269 133.774
M 635.166 3966.987 143.700 850.968 45.803 257.136 21.087 105.182

Table 3.6: Number of (C)entroids, building (T)ime in minutes, (R)aw memory (first-move
tables without compression) in MB, and (M)emory usage without/with (E) symbol in MB, for

different radius δ over four benchmarks.

needs to extract only one path using the CPD and the size of the CPD does not significantly

affect the performance because the number of first move extractions is small. Also, the query

time of CPE is dominated by the cost of getting the closest centroids from s and d. Note that

the path refinement is cheap for both CPE and SEPS which is mainly because, we only use

string pulling to find the first turning vertex, and make use of CPDs to quickly recover the rest

of the path. The refinement time for CPE is even cheaper because, in most of the cases, the

first vertex after cs (resp. before cd) is visible from s (resp. d) resulting in cheap string pulling

that behaves like a simple line-of-sight check.

In Fig. 3.8, we extend the comparison to show the cactus plots for each competing algorithm

over four different benchmarks. Note that for our CPE and SEPS algorithms, we also include

the path refinement time. Fig. 3.8 shows that both CPE and SEPS are significantly faster than

EPS, SUB-N-T and SUB-N-A. CPE is the best performing algorithm and scales really well with

the increasing difficulty of the queries.

3.4.3.3 Path Quality

In this experiment, we compare the path quality for CPE and the suboptimal EPS against the

competitors. Our evaluation is based on the following three measures: (i) The (O)ptimal ratio
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CPE CPE CPE CPE SEPS SEPS EPS SUB-N-T SUB-N-A

par (δ=1) (δ=2) (δ=4) (δ=8) (ϵ=32) (ϵ=8%) - - -

map Q R Q R Q R Q R Q R Q R Q Q Q

DAO 2.24 0.76 2.13 0.75 2.13 0.78 2.16 0.80 4.53 1.45 5.14 1.41 23.90 81.51 31.82
DA2 2.21 0.65 2.08 0.64 2.04 0.65 2.04 0.68 4.12 1.28 4.97 1.21 14.18 31.29 15.45
BG 1.97 0.69 1.91 0.73 1.88 0.69 1.84 0.69 4.05 1.08 4.92 1.02 12.29 33.83 14.32
SC 3.98 1.50 3.52 1.37 3.45 1.54 3.46 1.61 22.04 1.73 14.93 1.76 61.32 252.96 83.37

Table 3.7: Runtime comparison on the four benchmarks: we show the average (Q)uery pro-
cessing time (µs) and path (R)efinement time (µs) for Centroid-based Path Extraction (CPE),
and compare with: the Suboptimal EPS (SEPS) with an absolute bound ϵ=32 (the same sub-
optimality bound as δ = ϵ/4 = 8) and with a relative bound ϵ = 8% (the same sub-optimality
bound as SUB-N-T and SUB-N-A); the optimal EPS; and two subgoal graph methods SUB-N-T

and SUB-N-A.
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Figure 3.8: Runtime comparison on the four benchmarks. The x-axis shows the percentile
ranks of queries in number of node expansions needed by A* search to solve them.

(%) that corresponds to the percentage of instances when an algorithm retrieved optimal paths,

i.e., number of queries for which an algorithm returns an optimal path × 100 /total number

of queries; (ii) The (S)uboptimality ratio (%) which is the difference between the length of the

retrieved path and the optimal path divided by the length of optimal path (i.e., (Σ|retrieved
path| − Σ|optimal path|) × 100 / Σ|optimal path|); (iii) The path (D)ifference which is the

difference between the length of the retrieved path and optimal path. (i.e., Σ|retrieved path| −
Σ|optimal path|).

Effectiveness of path refinement in CPE and SEPS: In Table 3.8, we compare the path

quality before and after path refinement for our CPE and SEPS algorithms. Clearly, our path

refinement strategy significantly improves the path quality on all three measures. Before the

path refinement, the optimality ratio for both CPE and SEPS are low because: the retrieved

path by CPE can never be optimal unless the closest centroids of both s and d are either

turning points on the path or s and d lie on centroids; and SEPS essentially terminates as

soon as it satisfies the suboptimality constraint. However, it is clear that the optimality ratio

is significantly improved after the path refinement and, in fact, most of the paths returned by

CPE are optimal. In addition, we observe that the path refinement also significantly reduces

the average suboptimality ratio (S) and difference (D). Thus, the path refinement is cheap (see



65

CPE(δ=1) CPE(δ=2) CPE(δ=4) CPE(δ=8) SEPS(ϵ=32) SEPS(ϵ=8%)

map stat Before After Before After Before After Before After Before After Before After

DAO O(%) 3.110 95.291 3.140 89.409 3.061 80.893 3.077 70.393 3.931 39.283 9.067 44.413
S(%) 1.021 0.001 1.953 0.008 3.398 0.029 5.235 0.072 14.332 1.431 2.888 0.366
D 1.030 0.002 1.990 0.009 3.565 0.031 5.744 0.088 12.771 1.525 10.241 1.126

DA2 O(%) 2.315 96.486 2.342 91.925 2.253 84.061 2.335 74.797 5.625 47.126 12.013 54.842
S(%) 1.036 0.001 1.982 0.005 3.597 0.022 5.661 0.066 14.563 1.340 2.672 0.272
D 1.059 0.001 2.053 0.006 3.714 0.024 5.974 0.074 12.339 1.198 6.750 0.663

BG O(%) 6.053 97.988 6.053 95.392 6.047 91.105 6.080 85.045 9.153 49.024 16.868 56.305
S(%) 0.861 <0.001 1.671 0.002 3.159 0.008 5.352 0.030 12.964 1.292 3.191 0.383
D 1.082 0.001 2.105 0.003 4.020 0.015 7.020 0.052 15.131 1.899 8.478 1.058

SC O(%) 2.161 97.570 2.171 94.275 2.170 88.506 2.169 79.565 7.272 26.844 8.252 27.222
S(%) 0.473 <0.001 0.915 0.001 1.715 0.005 3.088 0.020 6.856 1.447 3.205 0.703
D 1.117 0.001 2.166 0.004 4.104 0.016 7.372 0.059 13.842 3.073 16.921 3.457

Table 3.8: Our Centroid-based Path Extraction (CPE) and Suboptimal EPS (SEPS), before
and after path refinement. We show (O)ptimal ratio (%): i.e., # optimal path × 100 / #
queries; average (S)uboptimality ratio (%): i.e., (cost(retrieved path) − cost(optimal path)) ×
100 / cost(optimal path) and (D)ifference: i.e., cost(retrieved path) − cost(optimal path).

Table 3.7) and very effective in improving the path quality. Finally, note that the average path

difference of our CPE both before and after path repair is much smaller than the theoretical

bound (i.e., 4 × δ). Similarly for SEPS, the theoretical error bound ϵ is also larger than the

average suboptimality ratio and path difference reported.

Comparison of different algorithms: Table 3.9 compares the algorithms on the optimal

ratio (O) as well as average and maximum suboptimality ratio (S) and path difference (D).

Clearly, CPE demonstrates excellent path quality for all different benchmarks on all measures,

e.g., the optimal ratio, average suboptimality ratio and average path difference are better than

those of SUB-N-T, SUB-N-A, SEPS(ϵ = 32) and SEPS(ϵ = 8%) for different values of δ and

remarkably better for smaller δ. SUB-N-A and SUB-N-T are better in terms of maximum

suboptimality ratio. Since CPE returns a path within an absolute bound, the path quality in

terms of suboptimality ratio may be very poor when the source and destination are close to each

other but δ is large (i.e., 4 or 8). On the other hand, CPE usually has a smaller maximum path

difference (D) compared to SUB-N-T for δ = 1, 2 or 4. For the SEPS with an absolute bound,

SEPS(ϵ = 32), we see that the maximum path difference is always close to the theoretical bound

ϵ as our SEPS greedily terminates the search as soon as it explores a path that satisfies the

constraint (note that the refinement does not improve the path quality if the returned path is

taut on both ends). This also causes the suboptimality ratio of the absolute bounded SEPS

to be large, especially in terms of maximum suboptimality ratio (which is mainly due to the

queries when source and destination are close to each other). The SEPS with a relative bound,

SEPS(ϵ = 8%), has the advantage that it allows the search to control the suboptimality ratio

within a certain percentage. However, in this case, it results in large absolute differences in the

worst-case (for queries when source and destination are far from each other).
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CPE) CPE CPE CPE SEPS SEPS SUB-N-T SUB-N-A

par (δ=1) (δ=2) (δ=4) (δ=8) (ϵ=32) (ϵ=8%) - -

map stat Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max

DAO O(%) 95.291 89.409 80.893 70.393 39.283 44.413 56.303 35.767
S(%) 0.001 12.75 0.008 19.73 0.029 141.42 0.072 89.44 1.431 1623 0.366 7.92 0.093 4.87 0.155 4.94
D 0.002 1.81 0.009 4.00 0.031 6.87 0.088 11.81 1.525 31.83 1.126 53.10 0.504 7.24 0.732 9.64

DA2 O(%) 96.486 91.925 84.061 74.797 47.126 54.842 63.949 48.312
S(%) 0.001 7.70 0.005 6.89 0.022 20.89 0.066 78.04 1.340 470 0.272 7.97 0.096 3.76 0.129 5.47
D 0.001 1.92 0.006 2.98 0.024 6.91 0.074 10.44 1.198 30.49 0.633 63.28 0.354 6.01 0.438 7.29

BG O(%) 97.988 95.392 91.105 85.045 49.024 56.305 82.958 66.343
S(%) <0.001 14.41 0.002 14.41 0.008 14.41 0.030 29.72 1.292 570 0.383 7.79 0.061 5.58 0.115 5.58
D 0.001 1.34 0.003 5.46 0.015 6.43 0.052 15.44 1.899 31.62 1.058 35.11 0.188 14.1 0.348 16.2

SC O(%) 97.570 94.275 88.506 79.565 26.844 27.222 54.780 27.952
S(%) <0.001 4.69 0.001 8.27 0.005 17.08 0.020 49.99 1.447 554 0.703 7.84 0.076 5.15 0.175 5.15
D 0.001 2.57 0.004 3.94 0.016 10.12 0.059 18.06 3.073 30.93 3.457 109.3 0.526 17.5 1.120 19.8

Table 3.9: Comparing CPE, SEPS, SUB-N-T and SUB-N-A on (O)ptimal ratio (%) as well
as average/maximum (S)uboptimality ratio (%) and (D)ifference.

3.5 Discussion

We introduce new approaches to Euclidean path finding based on Compressed Path Databases

(CPD). Our optimal algorithm, End Point Search (EPS), substantially improves the state-of-

the-art for optimal Euclidean shortest paths and also has impressive anytime behaviour. It

makes use of powerful CPD approaches to handle path finding on the visibility graph, and an

efficient incremental attachment of the end points to this graph, to quickly find high quality

solutions, and prove optimality fast. The bounded suboptimal variant, Centroid-based Path

Extraction (CPE), is several times faster than EPS for finding (absolute) bounded suboptimal

paths. It allows us to trade off the suboptimality bound versus the size of the resulting CPD.

In practice, its behaviour is much better than the theoretical bound, with ≈90% of paths found

being optimal for δ = 2.



Chapter 4

Contracting and Compressing

Shortest Path Databases

4.1 Overview

Compressed Path Databases (CPD) are powerful database-driven methods for shortest path

extraction in static road networks. A CPD can be understood as an oracle cpd(s, d) which,

given a source-destination pair, resp. s and d, tells the identity of the first edge on the optimal

path: from s toward d. Using a simple recursive procedure, CPDs can extract the entire paths

at ultra-fast speed [144]. There are however two drawbacks: (i) the time complexity for building

the database is quadratic in the size of the input graph, which can be prohibitive in some cases;

(ii) the query time performance grows supra-linearly with the number of edges in the shortest

path,1 which affects performance when there are many edges to extract.

In this chapter, we mitigate the disadvantages of CPDs by investigating connections with an-

other family of successful, but search-based, speedup techniques called Contraction Hierarchies

(CH) [22, 77]. The CH method can be understood as a type of embedded graph abstraction [145].

During preprocessing, additional “shortcut” edges are added to the graph. During online search,

these shortcuts help the search to bypass many “unimportant” vertices which would otherwise

need to be expanded. Moreover, the total number of edges on a path, from source to destination,

is reduced. For this reason, we consider contracted graphs in combination with CPDs. First,

CH graphs help to improve CPD online performance, by reducing the number of lookups we

need to perform when extracting a path. Second, CH graphs help to reduce CPD offline costs,

by allowing us to speed up the many Dijkstra searches required to construct first-move data. In

broad strokes, our strategy is as follows:

1Complexity per lookup is logarithmic in the size of the compressed data w.r.t the corresponding row.
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Symbol Description
G A weighted input graph.
V A set of vertices in the input graph G.
E A set of edges in the input graph G.
W A set of weights that maps each edge in G to a non-negative weight.
s The source of a pathfinding query and s ∈ V .
d The destination of a pathfinding query and d ∈ V .
vi A vertex in the input graph G and vi ∈ V .
P A path that consists of a sequence of vertices ⟨v1,v2, · · · , vk⟩.

Σ|P | The cost (i.e., length) of a path P .
C A selected subset of vertices that are used to cache the distance and C ⊆ V .
T A selected subset of vertices that are used to build partial CH-CPD and T ⊆ V .

g(vi, vj) The tentative distance of a search node from source vi to current vertex vj .
sd(vi, vj) The shortest distance (i.e., sum of cost) between vi and vj .

landmark(vi, vj) The lower-bound heuristic value returned by landmarks between vi and vj .

Table 4.1: Summary of the notations used in this chapter

• We compute distance tables for a small number of important CH vertices. We show that

these tables can be used to provide bounds for, and therefore can help to speed up, each

of the many Dijkstra searches necessary for computing first-move data.

• We also compute first-move data for only a selected subset of CH vertices. This further

reduces the overall time needed for CPD precomputation and also lowers the storage cost.

• We develop a new bidirectional query algorithm, which combines online search in a CH

with CPD path extraction. This allows us to compute the shortest paths substantially

faster than either CH or CPD.

We compare our approach on several well-known road network benchmarks. Our principal

points of comparison are SHP [84] and PHL [83]: two recent and also database-driven query

algorithms. We show that, for computing shortest paths, CH-CPD offers substantially better

performance and has overall smaller storage costs.

4.2 Preliminaries

In a static road network, the network is represented as a weighted graph where each edge assigns

a non-negative weight indicating distance, travel time etc. The pathfinding query asked us to

find point-to-point traversable paths within the weighted graph. Any two nodes in the graph

can be a potential source s and destination d, and the objective is to find the shortest path

traversing from s to d while minimising the sum of edge weights. In this chapter, we follow the

terminologies introduced in Section 2.2, and Table 3.1 shows the symbols used in this chapter.

As discussed in the overview, our algorithms utilise the Contraction hierarchies (CH) [22]

to mitigate the disadvantage of the state-of-the-art algorithms Compressed Path Databases
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Figure 4.1: Same as Figure 2.5, where we show the result of contracting E (resp. H) in purple
(resp. red). Dashed edges indicate shortcut edges.

(CPD) [26]. We have given a full description of CH and CPD in Section 2.2.2 and Section 2.2.3,

respectively. In addition, we adapt the landmark heuristic to further improve the performance of

bidirectional search (BCH) in CH, the details of landmark heuristic can be found in Section 2.2.1.

For the ease of presenting our techniques, we redraw an example of CH in Figure 4.1, where the

dashed edges show the shortcuts added by contracting the vertex E (resp. H) shown in purple

(resp. red).

4.3 Combining CH and CPD

Given a weighted graph G, we first construct a Contraction Hierarchy. With this contracted

graph in hand, a CPD can now be constructed by following the same general procedures already

described. However, we introduce three changes: (i) we modify the successor generating function

of the Dijkstra algorithm so that every vertex is reached along a ch-path; (ii) we enhance the

basic Dijkstra algorithm using precomputed distance tables, which speeds up the computation

of first-move data; (iii) we store compressed data for only a subset of all graph vertices.

4.3.1 CH-Paths in Dijkstra Search

Recall a ch-path always has an apex vertex which is lexically larger than all the other vertices on

the path. For a given source s and destination d, deconstructing the ch-path gives the following

three cases:

1. Up ch-path: d is an apex vertex (i.e., d >L v for v ∈ ⟨s, . . . d− 1⟩)

2. Up-Down ch-path: an intermediate vertex k is an apex vertex (i.e., k >L v for v ∈
⟨s, . . . k − 1⟩ | ⟨k + 1, . . . d⟩)

3. Down ch-path: s is an apex vertex (i.e., s >L v for v ∈ ⟨s+ 1, . . . d⟩)
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Figure 4.2: Constructing CPD on top of CH. The source vertex G is highlighted as green. The
first move on the optimal path from source vertex to any vertex are D, E and J shown as red,

purple and orange, respectively.

In other words, before the apex vertex, every subsequent vertex on a ch-path is lexically larger

than the previous. After the apex, every subsequent vertex on a ch-path is lexically smaller than

the previous. We modify Dijkstra search to only consider ch-paths by way of a simple neighbour

pruning rule called UTD (Up-Then-Down) [146]. The idea is simple: (i) if the predecessor of

the current vertex is lexically larger than the current vertex we prune all up successors (this

covers case 3); (ii) if the predecessor is lexically smaller than the current vertex we generate all

successors, up or down (this covers case 1 and 2). The only paths disallowed by UTD involve

edges to lexically smaller vertices followed by edges to lexically larger vertices; i.e., non ch-paths.

4.3.2 Distance Tables Enhancement

In a CH, vertices with high lex values often appear as the apex vertex along many shortest

ch-paths. We exploit this observation to reduce the cost of first-move preprocessing, as follows:

Caching: For a given contracted graph G, we first select a set of vertices C that have the

largest lex values. For each vertex vc ∈ C, we run our modified single-source Dijkstra search and

store not only a first move table but also a table of shortest distances, from vc to every other

vertex in the graph.

Pruning: For each remaining vertex v ̸∈ C, we start a single-source Dijkstra search as usual

but we never generate any successors for any cached vertex vc ∈ C. When expanding a cached

vertex we instead refer to the cached distances and attempt to relax the tentative estimate

g(v, v′) for each vertex v′ ∈ G. We perform the relaxation if g(v, v′) > sd(v, vc) + sd(vc, v
′)

where sd(vc, v
′) is the cached distance. The first move table of v is also relaxed accordingly

using the first move on the current optimal path P (v, vc). Simultaneously relaxing all tentative

distances gives tight upper bounds sooner and helps the search to terminate faster. First,

we never expand successors for any vertex vc ∈ C. Second, all distance information usually

propagated by such vertices is copied into the first move table of v. That means we also never
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expand any vertex vn ̸∈ C where the apex of the optimal ch-path from v resides in C. It is easy
to see this approach limits the search space and allows for faster termination.

On Demand Reading: Storing all distance tables in RAM requires O(|C||V |) space and

can be prohibitive as |C| grows large. We thus store the tables to disk and retrieve them on

demand: whenever the search expands a vertex vc ∈ C. When loading, distance data is mapped

into virtual memory at once, which avoids unnecessary I/O operations.

Example 4.1. Consider building the CPD for the graph of Figure 4.2. Assume we have already

constructed C = {J}. We begin a Dijkstra search from G and update tentative distances and first

move tables when expanding J. The search terminates after expanding D, A, E and J, without

exploring the rest of the graph. The first moves to C, H, I, F, and B are the same as for J since

the shortest ch-path from G to each of these vertices is via J.

4.3.3 Partial CH-CPD

CH and cost caching help to speed up each Dijkstra search, which means computing first-move

data is faster in practice compared to the original baseline. However, the worst-case time

complexity is unchanged: O(|V ||E| + |V |2 log |V |). To further improve preprocessing costs, we

propose to compute and store first-move data for only a selected subset of the full CH graph

(i.e., T ⊆ G).

There are many ways to choose T , but an important requirement is that the subgraph is

closed, in other words, for each pair of vertices, s, d ∈ T , the shortest ch-path must also belong

to T . Since every ch-path is always an Up-Down path, we can therefore select any subset of

vertices which is lexicographically upwards closed, i.e., T (vl) = {vl ∈ V | vl >L v for v ∈ V \T }.
Clearly, all Up-Down paths between vertices in T (vl) only make use of vertices in T (vl).

With T selected, we now compute a partial CPD for some upper part of the contraction

hierarchy. However, we also need to define a new shortest path algorithm, to support queries

for arbitrary pairs of source s and destination d. Here, we combine the BCH query method with

CPD path extraction. The approach is similar to End Point Search (EPS) [45] in that, when a

vertex v ∈ T is expanded, we use the CPD to extract candidate the shortest paths: from v to

all other vertices v′ ∈ T that have been expanded in the opposite direction. We give a detailed

description in the next section.

4.4 Bidirectional CPD Search

Our search algorithm is similar to BCH, but with some fundamental differences. Firstly, we

employ bidirectional A* search instead of bidirectional Dijkstra. In particular, for each s and d
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Algorithm 4: Bidirectional CPD Search

Input: s: source, d: destination, CPD: for vertices in the set T
Output: an optimal path from s to d
Initialisation: Vs = ∅, Vd = ∅, P = ⟨⟩, Σ|P | =∞, Rs = ∅, Rd = ∅

1 cur = s; opp = d;
2 Qs = {s}; Qd = {d}
3 while both A* searches are not exhausted do
4 v = pop(Qcur);
5 if v ∈ T then // v is a CPD vertex

6 Vcur ← Vcur ∪ {v}
7 for each v′ ∈ Vopp do
8 if g(cur, v) + sd(v, v′) + g(v′, opp) < Σ|P | then
9 P ← ⟨cur, v, v′, opp⟩

10 else
11 if v ∈ Ropp then // v reached by opp search

12 if g(cur, v) + g(v, opp) < Σ|P | then
13 P ← ⟨cur, v, opp⟩
14 A*Expand(v,Qcur, Rcur)

15 if Qopp is not empty then
16 cur, opp ← opp, cur;

17 return P after unpacking it;

query, our search is guided by a landmark heuristic; i.e., the f -value for a vertex v is g(s, v) +

landmark(v, d) with g(s, v) ≥ sd(s, v) being a tentative upper bound for the optimal distance

from s to v. Secondly, when the search expands a CPD vertex (i.e., a vertex that exists in

the partial CPD), we do not generate any successors. Instead, the partial CPD is used to

extract paths/distances to all CPD vertices expanded in the other direction. We also reduce

the number of first move extractions using pruning rules discussed later. Similar to BCH, our

approach considers only “up” edges and employs the well-known and performance-improving

technique called stall-on-demand [22]. This technique allows us to stall search nodes that cannot

be part of the shortest path, optimising the search process efficiently.

The pseudo-code of our approach is shown in Algorithm 4. We start the bidirectional search

from s and d with separate queues Qs and Qd. We use cur (resp. opp) to denote the current

(resp. opposite) direction in which the search is expanding; i.e., if cur is source then opp is

destination and vice versa. The optimal path P and the optimal path length Σ|P | are initialised
to be empty and infinity, respectively.

In each iteration, we pop the vertex v with the smallest f -value from the current queue Qcur

to expand (line 4). If this vertex is in the CPD (i.e., v ∈ T ), we add this to Vcur to record that

this CPD vertex is expanded by the search from cur (line 5 - 6). Then, we use the CPD to

efficiently compute the shortest path/distance from v to each CPD vertex v′ ∈ Vopp found by

the search from the opposite side opp. If, for any v′ ∈ Vopp, g(cur, v) + sd(v, v′) + g(v′, opp) is

smaller than Σ|P | (length of the current optimal path P ), we update the optimal path to be



73

⟨cur, v, v′, opp⟩ (line 7 - 9). Note that this only records two intermediate CPD vertices on the

path P . The complete optimal path is recovered once at the end of the algorithm. Also, note

that g(cur, v) and g(v′, opp) are already known due to the two A* searches from cur and opp,

respectively, whereas sd(v, v′) is efficiently extracted using the CPD.

If the vertex v is not a CPD vertex, we follow bidirectional search. For vertex v that we have

met from the other direction (i.e., v ∈ Ropp), we calculate the path length from s to d via v and

replace P with this path if it is better than the current P (line 11 - 13). We then expand v,

adding its neighbours to the “reached vertices” from the current direction Rcur and the priority

queue Qcur, pruning as appropriate using the current incumbent path length (line 14). Finally,

we swap the search and proceed in the other direction (assuming opp is not already exhausted).

Note that the search never expands beyond a CPD vertex, i.e., only non-CPD vertices can

generate successors.

The loop terminates when both of the A* searches exhaust. We say that an A* search

exhausts if either the queue becomes empty or the top vertex v has f -value at least equal to

Σ|P | (line 3). When the loop terminates, we unpack P to obtain the complete path and return

it (line 17). First, the Up-Down path in the contraction hierarchy is recovered from P by

using the predecessor for each vertex (recorded either during the two A* searches or the CPD

path extraction as discussed shortly). Then, the shortcuts in this Up-Down path are unpacked

to obtain the optimal path in the original graph. Next, we discuss pruning to speed up the

algorithm.

4.4.1 Pruning Enhancement

Recall, at line 8, we compute sd(v, v′) for every v′ ∈ Vopp using the CPD. This involves recursively

obtaining first moves to identify a complete path from v to v′. In some cases, we can avoid

computing sd(v, v′) by checking if g(cur, v)+ landmark(v, v′)+g(v′, opp) ≥ Σ|P |. For each pair

v, v′ that cannot be pruned in this way, we employ a caching scheme that can reduce unnecessary

first move extractions. Specifically, whenever we extract a first move u ∈ V on the shortest path

from v to v′, we also record g(cur, u) which corresponds to the shortest distance from cur to u

seen so far. We also maintain the predecessor of u which helps in path recovery as discussed

earlier. Later, when extracting a path from any v ∈ Vcur to any v′ ∈ Vopp, we can terminate the

recursion early if we reach a vertex u for which g(cur, u) < g(cur, v) + sd(v, u). This is because

we already have explored a path to u which is shorter than the current path to u via v. Notice

that our caching strategy maintains only tentative distances. As such, it requires no additional

memory overheads beyond what is typically allocated for bidirectional search. Though simple,

this approach substantially improves the performance of CH-CPD search.

Theorem 4.1. Algorithm 4 returns an optimal path.
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Figure 4.3: A* search from source (resp. destination) expands D (resp. I and F). C is pruned
by landmark heuristic.

Proof. Clearly Algorithm 4 examines all the paths that either meet, or connect via a pair of

CPD vertices (vs, vd). But avoids exploring the vertices that have the f -values bigger than the

cost of current shortest path Σ|P | (thus can never be part of optimal path), and vertices pairs

(vs, vd) of CPD where sd(s, vs) + sd(vs, vd) + sd(vd, d) ≥ Σ|P |.

Example 4.2. Consider the example in Figure 4.3 and assume that D to J are CPD vertices

(shown in red) and C is a landmark (shown in blue). The A* search from source A first expands

the CPD vertex D. Then, the A* search from destination B expands the CPD vertex I. CPD

is used to extract the path from I to D and the distances from B to each vertex on the path

are cached. The optimal path P is updated to be ⟨B, I, D, A⟩ with length 11. A* search from A

prunes the vertex C using the landmark heuristic because g(A, C) + landmark(C, B) = 10 + 6 =

16 > 11. This A* search exhausts. The A* search from the destination expands F. It needs to

extract a path from F to D using the CPD. First moves are extracted and when the vertex J is

reached, the path extraction stops. This is because the cached distance g(B, J) = 5 is smaller

than g(B, F)+sd(F, J) = 6. A* search from the destination is also exhausted. The path ⟨B, I, D, A⟩
is unpacked and returned as ⟨B, I, H, J, E, G, D, A⟩

4.5 Experiments

We test our proposed algorithms against baseline implementations of our two main ingredi-

ents, CH and CPD, and against other state-of-the-art methods from the recent literature. By

CPD, we refer to Compressed Path Databases, as represented by SRC [27] and implemented

by original authors.2 CH refers to Contraction Hierarchies [22, 77], as implemented in Rout-

ingKit.3 CH+L (CH + Landmarks) is a customised variant similar to CH where we replace

bidirectional Dijkstra search with bidirectional A* and Landmark heuristics. We show CH+L

performs significantly better than CH. Our approach meanwhile is denoted CH-CPD (x%)

2https://bitbucket.org/dharabor/pathfinding
3https://github.com/RoutingKit/RoutingKit

https://bitbucket.org/dharabor/pathfinding
https://github.com/RoutingKit/RoutingKit
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where x% means that a CPD is constructed for the top x% of the vertices in the contraction

hierarchy. Both CH-CPD and CH+L use 4 landmarks for distance estimates (adding more did

not improve performance).

For further comparison, we also consider two recent hub-labelling algorithms, PHL and SHP,

as described in [84] and using implementations from those authors4. PHL (Pruned Highway

labelling) [83] is a popular and efficient hub labelling method for shortest distance queries on

road networks. While most hub labelling algorithms use vertices as hubs, PHL differs mainly in

that it uses highway paths as hubs and the distances are maintained to these highways. SHP

(Significant path based Hub Pushing) [84] is another state-of-the-art hub labelling approach for

road networks. It employs ideas similar to PHL but considers the vertices on “significant paths”

as hubs. Such vertices are simply ranked by the multiplication of vertex degree and descendant

size difference. To efficiently recover the shortest paths, both PHL and SHP store predecessor

vertex along with each hub label as suggested in [84]. While this increases the index size, it

significantly speeds up the shortest path recovery time.

Queries: For experiments, we consider a variety of road networks taken from the 9th DI-

MACS challenge.5 We generate queries as suggested in [147]: each road network is discretised

into a 1024 × 1024 grid with cell side length l. We randomly generate ten groups of queries such

that i-th group contains 1000 (s, d) pairs with Euclidean distance between them within 2i−1× l

to 2i× l, thus 10,000 queries in total. In discussions, we distinguish between path queries, which

asks for a shortest (uncontracted) path from source to destination, and distance queries, which

ask only for the length. Individual queries are run 10 times; we omit the best and worst run

and average all the rest.

All algorithms (including the competitor algorithms) are implemented in C++ and compiled

with -O3 flag. We use a 32 cores Nectar research cloud with 64GB of RAM and Ubuntu 18.04

LTS (Bionic) amd64.

4.5.1 Preprocessing Cost and Space

We first compare various methods for shortest path query processing in terms of the preprocess-

ing time required and the size of the data structures required to support the method. Table 4.2

compares the CH-CPD approaches where the CPD is produced on the top 20%, 40%, 60%,

80%, or all the vertices versus other techniques. Note that the costs for CH-CPD include all

the costs for constructing and storing the contraction hierarchy. We make use of the distance

tables enhancement introduced earlier to speed up the CH-CPD preprocessing by caching the

top 0.5% of the vertices.

4http://degroup.cis.umac.mo/sspexp
5http://users.diag.uniroma1.it/challenge9/

http://degroup.cis.umac.mo/sspexp
http://users.diag.uniroma1.it/challenge9/
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Type Distance Travel Time

Name NY BAY COL FLA NW NE NY BAY COL FLA NW NE

#V 264k 321k 435k 1070k 1207k 1524k 264k 321k 435k 1070k 1207k 1524k

#E 733k 800k 1057k 2712k 2840k 3897k 733k 800k 1057k 2712k 2840k 3897k

B
u
il
d
T
im

e
(M

in
s)

C
H
-C

P
D

20% 0.36 0.23 0.33 3.11 2.00 5.28 0.27 0.15 0.21 2.41 1.20 3.21

40% 0.73 0.47 0.79 8.41 10.54 24.14 0.96 0.30 0.50 5.10 5.55 12.60

60% 1.18 0.86 2.21 19.78 25.10 56.44 1.79 0.61 1.26 10.88 13.80 27.29

80% 1.87 1.73 4.38 36.01 46.13 108.30 2.24 1.10 2.51 21.38 26.45 52.75

100% 2.95 3.13 7.46 56.24 73.63 167.40 3.00 1.83 4.24 33.97 42.56 85.10

C
o
m
p
et
it
or
s CPD 8.76 13.37 23.07 148.57 204.57 342.81 11.03 13.84 25.38 166.38 259.31 436.75

CH 0.24 0.14 0.19 0.44 0.43 1.18 0.16 0.09 0.10 0.29 0.32 0.59

PHL 0.60 0.35 0.71 1.85 2.62 7.89 0.18 0.12 0.19 0.71 0.71 1.44

SHP 0.44 0.31 0.59 1.71 2.55 7.05 0.17 0.14 0.22 0.75 0.86 1.51

M
em

or
y
(M

B
)

C
H
-C

P
D

20% 70 60 86 189 205 436 63 50 67 152 168 325

40% 104 80 155 328 424 836 88 63 117 261 346 602

60% 183 132 217 542 665 1438 156 102 158 405 509 1037

80% 271 183 268 755 868 2160 222 137 193 567 631 1599

100% 338 213 337 984 1100 2708 277 157 241 706 789 2028

C
om

p
et
it
o
rs CPD 219 144 239 692 818 1998 188 106 174 514 586 1597

CH 29 29 38 97 100 149 28 28 36 92 98 141

PHL 411 302 495 1325 1515 3453 161 116 180 526 568 995

SHP 449 359 593 1586 2008 4434 198 180 250 727 835 1350

Table 4.2: Number of vertices (#V) and edges (#E) in maps, build time in Mins, and memory
in MB for CH-CPD and competitors.

We use road maps from the DIMACS challenge using either the distance weights or the travel

time weights (which we will see are surprisingly different). Unsurprisingly, the contraction

hierarchy is the cheapest approach to both compute and store. Both PHL and SHP are more

expensive to compute, but only by a few factors. The CPD approaches are the most expensive

to compute; what is interesting is that the CPD on the original graph is more expensive to

compute than on the contraction hierarchy, since for the CH-CPD we can restrict to Up-Down

paths and make use of caching in the preprocessing. The full CH-CPD is around 50% larger

than the CPD on the original graph, even though it is cheaper to compute. Partial CH-CPDs

are significantly cheaper to both compute and store than the full CH-CPD, reaching the same

ballpark compute times as PHL and SHP at 20%. What is somewhat surprising is that the full

CH-CPD storage costs are significantly smaller than both PHL and SHP on the Distance maps,

while in the Travel Time maps they tend to be larger than PHL and around the same size as

SHP.

Overall, we see that the storage requirements for CH-CPDs are not overwhelming, and indeed

can be smaller than the competitors. The use of partial CH-CPDs means we can trade off
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Type Distance Travel Time
Name NY NE NY NE

Algorithm #C #CE TT #CE TT #CE TT #CE TT

C
H
-C

P
D

20%

0% 0 0.4 0 11 0 0.4 0 13
0.25% 13.48 0.12 15.64 4.39 4.97 0.12 6.04 2.37
0.50% 12.83 0.12 15.64 4.10 5.05 0.12 6.00 2.62
1.00% 12.60 0.12 15.09 4.42 4.97 0.13 5.99 2.52

40%

0% 0 1.5 0 49 0 1.6 0 60
0.25% 12.35 0.51 17.90 26.08 6.04 0.80 5.86 12.01
0.50% 12.24 0.49 17.70 22.96 6.01 0.81 5.85 12.01
1.00% 12.20 0.56 17.69 24.44 6.00 0.78 5.76 12.03

60%

0% 0 3.2 0 126 0 4.0 0 156
0.25% 12.70 0.94 16.58 57.16 5.88 1.56 5.61 24.82
0.50% 12.62 0.94 16.55 55.26 5.87 1.63 5.55 26.71
1.00% 12.65 1.00 16.59 56.82 5.88 1.67 5.55 28.02

80%

0% 0 6.0 0 255 0 7.4 0 307
0.25% 13.22 1.57 16.27 98.66 5.38 1.98 5.61 48.41
0.50% 13.20 1.63 16.26 107.12 5.38 2.08 5.55 52.17
1.00% 13.24 1.71 16.31 99.02 5.39 2.22 5.56 52.88

100%

0% 0 9.9 0 382 0 12 0 489
0.25% 12.45 2.56 16.28 150.07 5.26 2.68 5.58 81.97
0.50% 12.45 2.71 16.28 166.22 5.26 2.84 5.58 84.52
1.00% 12.49 2.81 16.32 148.02 5.26 2.91 5.57 82.65

Table 4.3: Average number of cache vertices expanded (#CE) and total build time (TT) in
minutes for constructing CPD for various proportions of the contraction hierarchy. We show

the number of cached vertices (#C) in range of 0 to 1% of the total vertices.

storage requirements with query time.

Table 4.3 shows some results about the effectiveness of the caching preprocessing enhancement.

The table shows the average number of cached vertices expanded when building CPDs for various

proportions of the contraction hierarchy, as well as the total build time to build the (partial)

CPD, for the smallest and largest map (not including the CH build time as in Table 4.2). We

vary the number of cached vertices to be 0% (no distance tables enhancement), and 0.25%,

0.5% and 1% of the total number of vertices in the map. Clearly the caching preprocessing

enhancement is highly effective, reducing construction times to one third, and by more on

larger maps. The percentage of cached vertices does not make that much difference, as clearly

the number of expanded cached vertices hardly changes. The results on the other maps are

similar. Note that this approach can be adapted to improve the preprocessing of traditional

CPDs as well. Although not reported here, we observed improvement by a few factors for

constructing traditional CPDs by caching the distances on the same top-n% of vertices. But

the choice of which vertices to cache is important to the success of the approach. With randomly

chosen cache vertices, we observed a slowdown as it incurs a large number of distance updates

in the order of |CE| × |E|. Our optimisation is not limited by certain ordering and we believe

that other intuitive lexical orderings (e.g., vertices having high ”reach”) may further improve

preprocessing of traditional CPDs.
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Figure 4.4: Runtime comparisons on the six road network Distance and Travel Time graphs.
The x-axis shows the percentile ranks of path queries sorted based on actual distances between

source and destination.

4.5.2 Query Processing Time

Next, we compare path query processing times of the various methods. Figure 4.4 shows cactus

plots for each competing algorithm on 12 different graphs. Note that for each CH-based method,

the path query time includes path unpacking. Examining the results we can see that in terms

of worst case performance contraction hierarchies are particularly important. The top three

methods in the larger maps are CH-CPD, CH+L and CH. Other methods can be faster for

some queries, since they avoid path unpacking, but by the time we reach 100% of queries

solved, these methods dominate. Interestingly, Landmarks are significantly beneficial for CH

on the Distance maps while making almost no difference on the Travel Time maps. Basic CPD

is very good for queries with short paths but becomes less competitive as more extractions are

required. CH-CPD is faster than all other approaches on all maps; the combination of no search

together with few lookups finds optimal paths very quickly.

In Table 4.4, we extend the comparison to consider the shortest distance queries and also

include the partial CH-CPDs. Unsurprisingly, the distance based methods PHL and SHP are

far superior for distance queries, since the other methods essentially find the shortest path and

then calculate its length (although they can avoid path unpacking). We can see that the partial
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Type Distance Travel Time

Name NY BAY COL FLA NW NE NY BAY COL FLA NW NE

D
is
ta
n
ce

Q
u
er
ie
s

C
H
-C

P
D

20% 12.83 10.83 12.96 18.91 17.53 25.97 10.53 9.15 10.28 14.31 15.83 19.59

40% 10.99 9.01 10.18 15.66 14.87 19.06 9.77 7.79 8.56 12.52 13.34 15.39

60% 7.57 6.69 8.43 11.69 11.41 14.46 6.81 5.77 6.05 10.15 10.29 11.33

80% 5.32 4.50 5.80 7.91 7.68 8.91 4.72 3.75 4.89 6.78 7.25 7.63

100% 3.23 2.79 3.64 5.02 4.99 6.44 2.55 2.31 3.01 4.19 4.19 5.51

C
om

p
et
it
or
s CH 28.33 17.99 29.43 31.10 30.90 53.54 16.53 12.23 14.63 17.43 18.79 27.10

CH+L 15.64 11.59 17.28 21.50 19.45 30.97 11.83 10.55 12.50 15.33 16.58 21.65

PHL 0.92 0.69 0.94 1.19 0.98 1.82 0.55 0.50 0.54 0.59 0.57 0.70

SHP 1.01 0.72 0.87 1.04 1.05 1.76 0.57 0.49 0.51 0.58 0.55 0.65

P
at
h
Q
u
er
ie
s C
H
-C

P
D

20% 23.17 19.78 29.06 49.12 41.87 62.34 19.16 19.06 26.22 38.40 41.39 49.71

40% 20.83 18.90 26.33 44.66 38.82 51.88 18.82 17.36 24.48 35.68 39.32 43.22

60% 17.19 16.67 23.37 39.61 35.05 47.27 14.83 15.11 20.85 32.73 36.03 37.28

80% 13.67 13.75 20.18 34.63 29.84 40.31 12.85 12.54 19.97 29.11 32.22 32.09

100% 11.42 11.78 17.01 30.62 26.28 37.70 9.53 10.61 17.26 25.52 27.95 31.22

C
om

p
et
it
o
rs

CPD 26.38 22.85 39.75 70.86 76.62 124.37 18.23 19.15 34.76 54.15 55.38 79.94

CH 38.64 28.69 46.00 63.63 57.42 90.85 25.27 21.64 31.54 42.21 44.97 58.04

CH+L 25.58 20.85 33.96 50.68 44.28 65.57 20.06 19.97 29.43 40.44 41.71 51.55

PHL 25.36 25.88 49.81 76.54 81.40 105.20 18.32 22.86 39.85 51.90 54.71 59.43

SHP 26.76 23.90 45.15 80.53 89.20 138.86 14.93 16.79 33.47 49.21 46.61 53.16

Table 4.4: Running time comparison for distance and path queries. We report average time
(µs) between CH-CPD and competitors.

CH-CPDs roughly double the query time when moving to a 20% CH-CPD, where the query

times are roughly still slightly ahead of CH+L and still significantly better than PHL and SHP

for path retrieval.

Table 4.5 provides more insights. CH+L performs significantly better than CH due to the

smaller number of vertices generated and expanded using the landmark heuristic. As shown by

CPD Usage, CH-CPD does not always need to use the CPD (when the optimal path does not

pass through CPD vertices). For such queries, CH-CPD essentially is the same as CH+L. Note

that the numbers of CPD vertices expanded from source (|Vs|) and destination (|Vd|) are pretty
small. Furthermore, the number of paths extracted using CPD is also significantly smaller than

|Vs| × |Vd| which shows the effectiveness of our pruning rules that also help significantly reduce

the number of first move extractions. Compared with the CPD on the original graph, the full

CH-CPD requires a significantly smaller number of first move extractions which explains its

superior performance.
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Type Name Stat
CH-CPD Competitors

20% 40% 60% 80% 100% CPD CH CH+L
D
is
ta
n
ce

NY

#Generated 62.63 52.10 18.99 6.98 - - 301.53 123.44

#Expanded 22.05 17.86 7.42 3.01 - - 101.30 41.47

CPD Usage 68.4% 75.0% 90.6% 95.5% 100% 100% - -

|Vs| 3.30 2.59 2.14 1.38 1 1 - -

|Vd| 3.29 2.57 2.09 1.39 1 1 - -

#Path 2.91 1.96 1.54 1.15 1 1 - -

#FirstMove 25.53 18.56 15.46 11.16 9.59 191.74 - -

NE

#Generated 87.95 51.54 21.33 1.16 - - 503.16 208.47

#Expanded 29.72 18.14 7.84 0.63 - - 149.77 62.80

CPD Usage 81.5% 90.0% 96.9% 99.9% 100% 100% - -

|Vs| 4.32 3.17 2.28 1.21 1 1 - -

|Vd| 4.37 3.19 2.24 1.23 1 1 - -

#Path 4.00 2.44 1.65 1.09 1 1 - -

#FirstMove 41.31 26.51 19.67 13.55 12.43 607.93 - -

T
ra
ve
l
T
im

e

NY

#Generated 57.17 45.27 20.22 7.46 - - 161.92 93.25

#Expanded 24.08 18.55 8.81 3.56 - - 71.82 40.29

CPD Usage 66.3% 74.7% 89.9% 95.1% 100% 100% - -

|Vs| 2.51 2.09 2.00 1.32 1 1 - -

|Vd| 2.48 2.06 1.97 1.34 1 1 - -

#Path 2.05 1.65 1.58 1.17 1 1 - -

#FirstMove 15.33 14.36 15.04 11.52 9.95 168.59 - -

NE

#Generated 73.96 42.74 19.22 1.15 - - 197.16 121.69

#Expanded 32.07 19.02 8.71 0.64 - - 89.64 54.05

CPD Usage 77.9% 89.5% 96.2% 99.9% 100% 100% - -

|Vs| 2.74 2.35 1.88 1.22 1 1 - -

|Vd| 2.76 2.35 1.88 1.23 1 1 - -

#Path 2.29 1.84 1.48 1.12 1 1 - -

#FirstMove 20.56 19.47 17.76 14.44 12.96 520.37 - -

Table 4.5: Average number of vertices #Generated and #Expanded by each algorithm. CPD
Usage corresponds to % of queries for which both A* searches expand at least one CPD vertex
(and hence end up using CPD). For queries that use CPD, we report average |Vs| (resp. |Vd|)
that denote # of CPD vertices expanded from s (resp. d), and average #Path and #Firstmove

extractions.

4.6 Discussion

We show how to use Compressed Path Databases and Contraction Hierarchies to generate

the fastest shortest path query retrieval method we are aware of. The use of Contraction

Hierarchies also allows us to cache information for the CPD construction that actually makes

CPD construction significantly faster. We also show how we can tradeoff preprocessing time

and space with path retrieval time by building partial CPDs. While path retrieval now requires

search it is still highly competitive with other methods.



Chapter 5

Improving Time-Dependent

Contraction Hierarchies

5.1 Overview

Time-dependent Contraction Hierarchies (TCH) [32, 85] is the state-of-the-art algorithm in

time-dependent road networks. TCH is a family of successful speed-up techniques that embeds

the road network into a hierarchical graph (see section 2.2.2). There are however two drawbacks:

(i) TCH inherits the bidirectional Dijkstra search from static Contraction Hierarchies [76]. This

approach does not rely on any lower-bounding heuristics for guidance, although such methods

are known to improve performance. (ii) In time-dependent road networks, TCH is built by

considering the entire time domain T , in order to answer all queries q ∈ T . However, each

individual query only corresponds to a trip within a limited time period Tq, such that Tq ⊂ T .

Embedding the travel time metric for the entire time domain T can increase the size of TCH

search space, which again affects query performance. In this chapter, we investigate how to

improve the TCH algorithm. In broad strokes, our strategy is as follows:

• We show the traditional bidirectional Dijkstra search on TCH can be extended to a bidi-

rectional A* search using landmark heuristics [16].

• We revise the bidirectional search on TCH to a forward A* search, this allows us to

combine the search with a path databases heuristic [48] (i.e., CPDs and RPDs). We also

consider the contracted graphs in combination with CPDs, which further improve the

lower bound and the performance for extracting such a bound.

• We propose to build a set of smaller TCHs, each of which focuses on a subset of the

time domain. By choosing the appropriate TCH for each query q ∈ T , we can retain

81
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Figure 5.1: Same as Figure 2.7, where we show an example of an undirected time-dependent
graph. TTFs of the red edges are shown below the graph, and the travel cost of the other edges

are constant.

the optimality guarantees of the original algorithm while substantially improving search

performance.

We give a complete description of the new algorithms, and evaluate them on a range of

road networks, including real-world as well as synthetic datasets. Results show substantial

improvement over the baseline TCH method.

5.2 Preliminaries

In a time-dependent road network, the network is modelled as a directed graph, where each

edge is associated with a piece-wise linear function that represents the varying travel time of

traversing the edge over the time period T (usually 24 hours). For the ease of presenting our

techniques in this chapter, we redraw the Figure 5.1 to show an example of a time-dependent

network, where we assume the graph G is undirected and only the edges that are highlighted in

red have non-constant Travel Time Function (TTF) with T = [0, 180). Any two locations in the

time-dependent network can be the source s and destination d. Given a departure time t ∈ T ,
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Symbol Description
G A time-dependent graph.
V A set of vertices in the input graph G.
E A set of edges in the input graph G.
F A set of functions that map each edge in G to a travel time function.
T The time domain of the input graph G.
s The source of a pathfinding query and s ∈ V .
d The destination of a pathfinding query and d ∈ V .
t The departure time of a pathfinding query and t ∈ T .
q A pathfinding query q, i.e., q = (s, d, t).
vi A vertex in the input graph G and vi ∈ V .

evivj A directed edge that connects vi to vj in the input graph G and evivj ∈ E.
fvivj The travel time function of the directed edge evivj and fvivj ∈ F .

fvivj (t) Evaluating the travel time function fvivj at the departure time t.
fvivj ◦ fvjvk Chaining the travel time functions fvivj

and fvjvk of two edges evivj and evjvk .
min(f ′

vivj , f
′′
vivj ) Merging the two travel time functions f ′

vivj and f ′′
vivj of a same edge evivj .

P A path that consists of a sequence of vertices ⟨v1,v2, · · · , vk⟩.
Σ|P | The cost (i.e., length) of a path P i.e., Σ|P | = fv0vk(t) = fv0v1 ◦ fv1v2 . . . ◦ fvk−1vk .

g(vi, vj) The tentative distance of a search node from source vi to current vertex vj .
sp(vi, vj , t) The shortest path from vi to vj at the departure time t.
fm(vi, vj) A function that extracts the first-move between vi and vj using path databases.

landmark(vi, vj) The lower-bound heuristic value returned by landmarks between vi and vj .

Table 5.1: Summary of the notations used in this chapter

the objective is to find the fastest (i.e., shortest) path traversing from s to d at departure time

t. In this chapter, we follow the definitions and terminologies discussed in the Section 2.2.4,

and Table 5.1 shows a summary of the symbols used in this chapter.

In this chapter, we focus on improving the Time-dependent Contraction Hierarchies (TCH) [32,

85], where the details of TCH can be found in Section 2.2.4.1. Figure 5.2 shows an example

of TCH by contracting the time-dependent graph shown in Figure 5.1. The dashed edges in-

dicate the shortcuts added by contracting the vertex E and F in purple and D in red. Our

techniques also involve two important ingredients: landmarks heuristic [28] and Path databases

heuristic [48], we give the description of both algorithms in Section 2.2.4.1 and the detail of

constructing the Compressed Path Databases (CPD) and Reverse Path Databases(RPD) can

be found in Section 2.2.3.

5.3 Improving Search on TCH

Given a time dependent graph G, we construct the Time-dependent Contraction Hierarchy. For

a given pair of source and destination and its departure time t, the traditional Bidirectional

TCH search (BTCH) is a successful and efficient method to solve the pathfinding problem.

However, we show the search algorithm can be further improved (i) by combining the BTCH

with landmark heuristics; (ii) by changing the search to a forward search and combining with
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Figure 5.2: Same as Figure 2.9, where we show the result for contracting nodes E and F in
purple, and D in red. Dashed edge are the shortcut edges and their corresponding TTFs are

shown in the figure below.

a more advanced CPD-based heuristic: TCPD heuristic; and (iii) by splitting the time domain

T into multiple T ′ (i.e., T ′ ⊆ T ), such that each query in T ′ can be efficiently solved by TCH

constructed for T ′ only.

5.3.1 Combining BTCH with Landmarks

In time-dependent road networks, landmarks have been widely used in many existing techniques,

such as bidirectional A* search [29], core routing [30] and SHARC routing [31]. Following the

success of these algorithms, we extend BTCH using landmarks:

(i) During the Bidirectional Search: We employ the bidirectional A* search instead of bidirec-

tional Dijkstra search, and the search on each side is guided by the landmark heuristic, i.e., the

f -value for a vertex v is g(s, v) + landmark(v, d) with g(s, v) ≥ Σ|sp(s, v, t)| being a tentative

upper bound for the shortest path from s to v. We also apply the pruning rule used in the

BTCH and mark the edges that are traversed by the backward search as Etrv. The search

terminates when the minimum f -value for both A* searches are larger or equal to the smallest

upper bound U so far.
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(ii) During the Forward Search: Recall that the backward search in the bidirectional phase

computes the lower bound lb(v, d) on each vertex v using lower-bound edge weights of the

incoming edges in E↓ and records the edges that have been traversed as Etrv. We argue that

the lower bound lb(v, d) can be directly used as a heuristic, because lb(v, d) ≤ Σ|sp(v, d, t)| for
∀t ∈ T . lb(v, d) is also more effective than the landmarks as this lower bound computes the true

minimum distance in E↓ (i.e., lb(v, d) ≥ landmark(v, d)).

Combining the landmarks heuristic with bidirectional search speeds up the search in both

directions, and results in a smaller subset Etrv compared with the Dijkstra search. Although

the forward search is funnelled into the direction of d and is usually cheap to run, directly

reusing the previously computed lower bound further improves the query performance, as we

show later in the experiments section.

5.3.2 Forward TCH Search with CPD-based Heuristic

Due to the fact that the travel cost on a TTF can not be computed without a known departure

time t, forward search seems to be a natural way to solve the pathfinding problem in a time-

dependent road network. This motivates us to revise the search on TCH to be a forward search.

In addition to landmarks, we consider a more sophisticated goal-directed heuristic, called the

TCPD heuristic, and we show this heuristic (i) requires fewer first move extractions; and (ii)

provides a more effective lower bound compared to the CPD heuristic. To further improve the

query performance, we also propose several pruning rules and optimisations.

5.3.2.1 Forward TCH Search (F-TCH):

For a given source s and destination d, suppose we expand a search node n with its predecessor

pred(n), a time-dependent Dijkstra search on the TCH typically generate successors succ(n),

which fall into one of the following types:

1. Up-Up successors: pred(n) <L n and n <L succ(n);

2. Up-Down successors: pred(n) <L n and n >L succ(n);

3. Down-Down successors: pred(n) >L n and n >L succ(n);

4. Down-Up successors: pred(n) >L n and n <L succ(n);

Given a departure time t, although this uni-directional Dijkstra search finds the shortest path

sp(s, d, t), the search is unlikely to be efficient without avoiding the non tch-paths. Therefore,
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we modify the search to consider only the tch-paths by a simple pruning rule called UTD (Up-

Then-Down) [146]. Recall that a tch-path is always an UP-Down path with an apex vertex

which is lexically larger than all the other vertices on the path. The F-TCH needs to generate

(i) the type 1 and 3 successors, which covers the Up or Down tch-paths (i.e., s or d is the apex

vertex) by continuously moving up or down; (ii) the type 2 successors, which covers the Up-

Down tch-paths (i.e., an intermediate vertex k is an apex vertex and k >L v for v ∈ ⟨s, . . . k−1⟩
| ⟨k + 1, . . . d⟩) by switching the direction at the apex vertex. Therefore, the only type of

successors that is disallowed by UTD is the Down-Up successors, which leads to a non tch-path.

5.3.2.2 TCH-CPD (TCPD) heuristic:

Given a time-dependent graph G, we construct a CPD using the minimal edge cost of each

edge, and use this CPD in a forward TCH search as a heuristic to further improve the search.

However, path extraction for CPD requires a number of lookups (i.e.,fm(s, d)) equal to the

number of edges on the optimal path, thus can be costly when used as a heuristic. To mitigate

such defects, we propose to combine the CPD with TCH. Our idea is motivated by the previous

Chapter 4 that shows combining CPD with contraction hierarchies in a static graph reduces the

first move extractions significantly. However, combining CPD with TCH is more complicated.

Given a TCH constructed on a time-dependent graph G, we obtain a contracted graph by

taking the lower-bound value of each TTF. In order to build the CPD, we further modify F-

TCH to compute the first moves on the optimal tch-path, from each source vertex s toward

∀d ∈ V . For a given source vertex s, we divide the search node v with its parents pred(v)

into two types: (i) Up-reach search node vu: pred(vu) <L vu. (ii) Down-reach search node vd:

pred(vd) >L vd. At each search node v, we allow the search to independently expand each type

of search nodes once with g(s, vu) and g(s, vd) being the best tentative distance respectively.

The search terminates when the open list becomes empty, and for each vertex v, we have (i)

g(s, vu) which computes the shortest up tch-paths; and (ii) g(s, vd) which covers all the shortest

up-down or down tch-paths. Therefore, the first move from s to any v on the optimal tch-paths

can be easily obtained from the path min(g(s, vu), g(s, vd)).

Example 5.1. In Figure 5.3, the contracted graph is taken from the TCH in Figure 5.2. Assume

we compute the first move row on the source vertex A. A simple F-TCH would falsely prune

the successor J when expanding search node F because the best tentative solution from A to F

is ⟨A, H, F⟩ and the successor J is a down-up successor (i.e., H >L F <L J). However, the

modified F-TCH computes the optimal path ⟨A, F, J⟩ correctly as it manages up and down search

nodes separately, i.e., the down-up successor pruning is only performed when expanding a down-

reachable search node. Also note the first moves from source node H are now on the optimal

tch-path.
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Figure 5.3: From the source vertex H, the optimal first move to any vertex are A (red),
E(orange), F (purple) and J (pink)

With the modified F-TCH search, we now construct the TCPD following the same general

procedures already described. Given a source and destination, we denote the path extracted

from TCPD as tcpd(s, d).

Theorem 5.1. Given a pair of (s, d) and departure time t ∈ T in a TCH, Σ|tcpd(s, d)| is a

lower bound for Σ|sp(s, d, t)|.

Proof. Given a TCH constructed in G, there must exist a cost equivalent tch-path for every

sp(s, d, t) and t ∈ T . In a lower-bound graph of TCH, TCPD computes and encode the first

move on the optimal path, from any s to any d by examining all possible (i) up; (ii) up-down; and

(iii) down tch-path. Thus, Σ|tcpd(s, d)| defines a lower bound, i.e., Σ|tcpd(s, d)| ≤ Σ|sp(s, d, t)|
for ∀t ∈ T .

Due to Theorem 5.1, Σ|tcpd(s, d)| defines an admissible heuristic and can be easily com-

bined with forward TCH search. Recall that the lower bound on a shortcut edge min(fuw) ≥
min(fuv)+min(fvw), thus Σ|tcpd(s, d)| is a tighter lower bound, i.e., Σ|tcpd(s, d)| ≥ Σ|cpd(s, d)|.
Next, we introduce several optimisation techniques to further improve the query performance.

5.3.2.3 Downward Successors Pruning:

Although the F-TCH prunes the up-successors, when expanding the node n, it has to generate

every down-successor v no matter whether pred(n) >L n or pred(n) <L n. However, not every

down-successor v can lead to a path ⟨n, . . . d⟩ that reaches the destination d from the apex vertex

n. Therefore, we reuse the concept of CPD and propose a reachability oracle, called Reach, that

tells whether there is a down path ⟨s, . . . d⟩, from a given vertex s to any vertex d. Whenever the

F-TCH generates the down-successors n, we use Reach(n, d) to prune non-reachable successors.

Eliminating the down-successors early helps the search to reduce the branching factor. Next,

we discuss the construction of Reach.
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To build Reach, we first compute a down-reachability table (DT) by running a Depth First

Search (DFS) on each source vertex s that only generates the down successors (i.e., succ(n) >L

n). Although DT is a simple truth table, without a better ordering, it does not compress

well. But note that the TCH is a hierarchical data structure that is rooted from one or more

important vertices, and these vertices are assigned to the largest lex order possible. Therefore,

we run a DFS from the vertex that has the largest lex order. Similarly, the search only visits the

down-successors, not earlier expanded by a vertex with larger lex order. We order the columns

of DT according to the order of vertices accessed by this DFS, and compress it using RLE.

With this novel ordering, Reach can be compressed effectively (e.g., in a graph with millions of

vertices, Reach only needs a few MB to store), and each binary search Reach(s, d) runs in near

constant time.

5.3.2.4 Cost Caching:

When TCPD is used as a heuristic, it needs to continuously extract the path tcpd(s, d) at each

node expansion of s. To further reduce the number of fm(s, d), we apply a simple cost caching

strategy. When we extract a path from s to d, we cache distance dist(v, d) = Σ|tcpd(v, d)|
for each vertex v on the extracted path tcpd(s, d). Later on, for a subsequent path extraction

tcpd(s′, d), we terminate early if the path extraction reaches the vertex v such that dist(v, d)

is cached, and we use the cached distance to get the path length from s′ to d. Similar cost

caching strategies have also appeared in CPD-based search [45], and CPD-heuristics [48], since

they significantly reduce the first move extractions.

5.3.2.5 Reverse TCH Path Database:

Another way to improve the path extraction of tcpd(s, d) is to speed up each fm(s, d) by building

a reversed tch path database (RTPD) that is similar to the RPD as discussed earlier. Recall

that a RPD computes a reverse first move table RR that records the first move on an optimal

path from any s to a given destination vertex d. Similarly, on each source vertex s, we compute

RR(s) in TCH using a modified F-TCH which considers only the incoming edges of TCH. RTPD

and TCPD essentially compute the same first moves, but only store in a different way, thus all

the properties of TCPD preserved.

5.3.3 Splitting the Time-domain

In order to handle any arbitrary query that is issued at t ∈ T , a TCH is usually built by

considering the entire time domain T . However, each individual query only requires us to

consider a much shorter time period Tq = [t, t′], where t′ is the optimal arrival time when
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travelling from s to d at t. Therefore, the TCH has two drawbacks: (i) In each edge, the

TTF stores all interpolate points w.r.t T , thus requires more time to evaluate the travel time

for t, and results in a looser lower and upper bounds than Tq. (ii) For each shortcut edge

euw, euw is added if ∃T ′ ⊆ T such that ⟨u, v, w⟩ is an optimal path from u to w during T ′,

such a shortcut edge may be unnecessary for Tq. To mitigate these disadvantages of TCH, we

propose to split T into n number of equal-sized time buckets Ti (i.e., Ti = [ti, ti+1] = |T |/n for

0 ≤ i ≤ n − 1) for processing start times t ∈ [ti, ti+1). For each bucket Ti, we build a TCH to

cover all Σ|sp(s, d, t)| ≤ tu by adding an upper bound tu, and building TCHi(T ) over time range

[ti, ti+1 + tu]. First, we show how to choose the upper bound tu to form a single-layer TCH,

denoted as STCH, such that ∃ TCHi ∈ STCH and TCHi(T ) ⊇ Tq for all queries q ∈ T . We then

describe a multi-layer TCH which combines STCHs with customised tu. For each individual

query q ∈ T , we show q can be improved using TCH built in STCH with minimal tu.

5.3.3.1 Single-layer TCH

In the time-dependent shortest path problem, highly accurate solutions are needed, especially

when a user needs to plan a short-term trip. Therefore, our main focus is on city-sized road

networks. From point to point in a city-sized graph, the shortest path sp(s, d, t) does not

typically take a large amount of time (e.g., travel within Melbourne almost always requires less

than four hours). Suppose Σ|sp(s, d, t)| < tu for every possible start s, destination d and start

time t. We build a TCH for each start time bucket Ti = [ti, ti+1] which only considers travel in

the time [ti, ti+1 + tu]. Then we can answer a shortest path query sp(s, d, t) correctly by using

TCHi built for time bucket Ti where t ∈ Ti if travel time is no more than tu.

Example 5.2. Consider the example in Figure 5.2. Assume we split the time domain T =

[0, 180] into 6 time buckets, i.e., |Ti| = 30 for 0 ≤ i ≤ 5. Since ∀sp(s, d, t) ≤ 90 for t ∈ T and

(s, d) ∈ G, we set the upper bound tu = 90. Notice that contracting the vertex D for T0 (i.e.,

T0 = [0, 120]) does not add the shortcut eJG, as ⟨J, I, G⟩ is a shorter path than ⟨J, D, G⟩ (i.e.,
20 + 10 ≤ min(fJD ◦ fDG)).

5.3.3.2 Multi-layer TCH

Although we can predict an upper bound tu that is large enough for solving all queries, the

upper bound tu may not be efficient, because many, if not most travel time of queries q ∈ T

may be much smaller than tu. In order to solve q using a TCH such that TCH(T ) is as small as

possible, we propose to form multiple STCHs with different tu into a Multi-layer TCH (MTCH).

In the offline phase, we build MTCH as the following:
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1. At the root R of MTCH, we construct a TCH w.r.t the entire time domain T . In addition,

we build a TCPD as discussed earlier.

2. For each lower layer j of R, we build STCHj by splitting T into n time buckets Ti, and

the upper bound tu can be set to any customised value, but only needs to be less than t′u,

where t′u is the upper bound used in STCHj−1.

During the online phase of MTCH, given a query sp(s, d, t) with t ∈ Ti, we first obtain an upper

bound U(s, d) using the maximal travel cost for the path extracted from TCPD between s and

d. Therefore, we know the query can be solved in Tq = [t, t+ U(s, d)]. For TCHs built in time

bucket Ti, we check each layer of MTCH via a top-down scan from STCH0 to STCHj . The

scan terminates when TCHi(T ) ̸⊇ Tq, and returns TCHi with minimal TCHi(T ) that covers Tq.

If TCHi is found, we answer the query using the TCHi. Otherwise, we answer the query by

running a forward TCH search in R, with TCPD guiding as a heuristic. MTCH is guaranteed to

solve all queries q ∈ T in R, and each q ∈ Ti is safely improved by using the TCHs maintained

in lower layers.

5.4 Experiments

We test our proposed algorithms against the baseline implementation of Time-dependent Con-

traction Hierarchies (TCH), taken from the repository1 of original authors [85]. The implemen-

tation is also known as KaTCH. In a recent study [86], it was shown that KaTCH is the state-

of-the-art algorithm and outperforms a range of optimal algorithms, including CATCHUp [86],

TD-CALT [30], and TD-SHARC [31]. Meanwhile, our approaches: (i) the Single-layer TCH

(STCH) is built by splitting the time domain into 24 hourly buckets and the upper bound tu

is set to 4 hours as no trip in our tested maps exceeds this limit. (ii) The Multi-layer TCH

(MTCH) is built by adding three layers of STCH under the root R. For each layer, we maintain

24 hourly time buckets and set tu to 4h, 2h and 1h correspondingly.

For the heuristics, we further compare our approaches with Compressed Path Databases [27]

and take the implementation from the publicly available repository.2 By CPD, we mean the

Compressed Path Databases that is built on the contracted graph of TCH. On the other hand,

our approach L12 indicates using 12 landmarks for travel time estimation (we varied the number

of landmarks from 4 to 16, and 12 appears to be the best). TCPD and RTPD refer to TCH-

based Compressed Path Databases and Reverse TCH Path Database, respectively. We also

use the letter B and F to denote the Bidirectional search and Forward search, respectively.

For example, B-TCH(L12) denotes our algorithm bidirectional TCH search with landmarks

1https://github.com/GVeitBatz/KaTCH
2https://bitbucket.org/dharabor/pathfinding

https://github.com/GVeitBatz/KaTCH
https://bitbucket.org/dharabor/pathfinding
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heuristic, and F-TCH(L12) denotes the forward TCH search with landmarks heuristic, while

applying all optimisations introduced.

Dataset: For experiments, we consider the real-world dataset taken from the public repos-

itory.3 The dataset contains the road network for New York (NY) and the historical travel

time that is estimated every hour during the entire 2013 year. Note that the NY dataset used

in this chapter is distinct from Chapter 4, as they originate from different repositories. In or-

der to compute TTF for each edge, we take the travel time data from Tuesday to Thursday

following [85] and average them for each hour after filtering out the data by two standard devi-

ation. Overall, the NY dataset has 12.59% of edges that are time-dependent with time domain

[0h, 24h). Since there are not many time-dependent datasets available online, we also create a

few synthetic datasets to evaluate our algorithms: (i) In order to simulate the data on other

cities, we take the road networks for Gold Coast (GC), Sydney (SYD), and Melbourne (MEL)

from the OpenStreetMap4 and use the traffic pattern taken from NY dataset, to assign each

type of road the same percentage of time-dependent edges. (ii) In order to simulate a more

accurate TTF, we change the TTF of NY dataset by taking the 5 mins data points on a cubic

spline created using the original data. We denote this dataset as NY-5.

Queries: We generate queries following the same method as in [147]. For each road network,

we discretise the map into a 1024 × 1024 grid with cell side length l. Then, we randomly generate

ten groups of queries such that i-th group contains 1000 (s, d) pairs with Euclidean distance

between them within 2i−1 × l to 2i × l, i.e., 10,000 queries in total. During each hour in the

time-domain [0h, 24h), we report the performance for each algorithm to determine the length of

the shortest path, without outputting the complete description of the paths. Individual queries

are run 10 times; we omit the best and worst runs and average the rest.

All algorithms (including the competitor algorithms) are implemented in C++ and compiled

with -O3 flag. We use a 2.6 GHz Intel Core i7 machine with 16GB of RAM and running OSX

10.14.6. For reproducibility, all of our implementations are available online.5

5.4.1 Preprocessing Cost and Space

All indexes were built on a 32 core Nectar research cloud with 128GB of RAM running Ubuntu

18.04.4 LTS (Bionic Beaver). Table 5.2 shows the build time and memory required for TCH,

STCH and MTCH, as well as constructing heuristic CPD, TCPD and RTPD. Note that for

STCH and MTCH, TCPDs are constructed on top of TCH in each time bucket Ti. All CPD-

based heuristics include the costs for constructing and storing the underlying hierarchical data

3https://uofi.app.box.com/v/NYC-traffic-estimates
4https://www.openstreetmap.org
5https://github.com/bshen95/Improving-TCH

https://uofi.app.box.com/v/NYC-traffic-estimates
https://www.openstreetmap.org
https://github.com/bshen95/Improving-TCH
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Name NY GC SYD MEL NY-5

#V 96k 39k 192k 314k 96k
#E 260k 81k 421k 690k 260k

B
u
il
d
T
im

e
(M

in
s)

TCH

- 1.72 0.03 0.37 0.62 30.76
CPD 2.92 0.18 5.17 15.55 31.94
TCPD 2.94 0.17 4.99 14.65 31.96
RTPD 3.21 0.18 6.19 17.93 32.30

STCH
- 2.99 0.25 1.88 3.50 22.15

TCPD 31.87 3.56 111.99 342.74 50.68

MTCH
- 9.04 2.51 11.01 24.52 37.18

TCPD 95.12 12.46 341.03 1030.67 122.48

M
em

o
ry

(M
B
)

TCH

- 269 32 214 417 4242
CPD 346 36 290 587 4319
TCPD 353 36 294 609 4325
RTPD 9596 1614 37168 99237 13569

STCH
- 1279 231 1421 2710 12254

TCPD 3286 334 3254 7132 14262

MTCH
- 3193 829 3711 6815 23289

TCPD 9198 1138 9147 19927 29297

Table 5.2: Total number of vertices (#V) and edges (#E) in maps, build time in Mins, and
memory in MB for TCH-based data structure with different heuristics.

structure and the reachability oracle Reach (for all datasets, Reach takes <10 secs to build and

<5MB to store).

For heuristics of the TCH, our proposed TCPDs are built in similar time to CPDs, but take

slightly more space to store. On the other hand, RTPDs shows higher build time and space-

consumption than both CPDs and TCPDs. Comparing with TCH, both STCH and MTCH are

generally more expensive to build and store. However, interestingly, we see STCH is cheaper to

compute than TCH in the NY-5 dataset. This is because the TTF of NY-5 has more interpolate

points (i.e., every 5 mins) than the other datasets. During TCH construction, adding shortcut

edges requires search to verify the local optimality, which can adversely affect the performance

when considering the entire time domain T . The memory of STCH and MTCH can be large

after including the TCPDs heuristics. However, during the query time of the entire day, STCH

and MTCH roll over the TCHs built for each hourly bucket, so the actual memory required in

RAM is only 1/24 of the memory reported in Table 5.2.

5.4.2 Query Processing Time

In this experiment, we compare the average query processing time for our algorithms against

the baseline implementation of TCH. During the entire time domain [0h, 24h), we evaluate all

queries by setting the departure time t at each hour. We report the average runtime of each

algorithm.
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Figure 5.4: Runtime comparisons between TCH and different heuristic searches on TCH. The
x-axis represents every hour during the time domain [0h, 24h). The y-axis shows the average

runtime of different algorithms in µs.
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Figure 5.5: Runtime comparisons between the baseline implementation of TCH, and our
algorithms STCH and MTCH with/without TCPD heuristics. The x-axis and y-axis are same

as in Figure 5.4.

5.4.2.1 Heuristic Search

Figure 5.4 compares the query performance between the bidirectional TCH search (B-TCH) and

our proposed heuristic searches on TCH. Examining the results, we see that all heuristic searches

are substantially faster than the baseline implementation of TCH. For bidirectional TCH search,

our proposed algorithm B-TCH(L12) improves B-TCH by around 30% of time. Moving to

forward TCH search, the landmark heuristic F-TCH(L12) becomes faster than B-TCH(L12)

for most datasets (e.g., NY, GC and SYD). In addition, the TCPD heuristic outperforms the

landmark heuristics for forward TCH search in all datasets. Using RTPD heuristics dominates

all methods. We also compared against CPD heuristics, the performance of F-TCH(CPD) is

however significantly slower than other approaches (see Table 5.3).

5.4.2.2 Splitting the Time Domain

Figure 5.5 compares B-TCH against our algorithms. From the results, it is clear that B-STCH

significantly outperforms B-TCH, and B-MTCH further improves the query performance. We

also see that TCPD heuristics improve both algorithms, but F-MTCH(TCPD) costs addi-

tional time to switch to the corresponding TCH, thus, only shows competitive results with

F-STCH(TCPD). Furthermore, unlike the TCH-based algorithms, the STCH and MTCH-based



94

0 6 12 18 24

0

50

100

150

200

250
Av
er
ag
e 
Ru
nt
im
e 
(μ
s)

NY-5 Map

B-TCH
B-TCH(L12)
F-TCH(L12)

F-TCH(TCPD)
F-TCH(RTPD)

0 6 12 18 24

0

50

100

150

200

250

Av
er
ag
e 
Ru
nt
im
e 
(μ
s)

NY-5 Map

B-TCH
B-STCH
B-MTCH

F-STCH(TCPD)
F-MTCH(TCPD)

Figure 5.6: Runtime comparisons on NY-5 datasets, we show the results for different heuristics
on TCH (left), STCH and MTCH with/without TCPD heuristics (right).

approaches do not exhibit a similar trend with the departure time variant. This disparity arises

from the fact that each query with a different departure time is answered by a sub-TCH of

STCH/MTCH constructed within a distinct time domain, and these sub-TCHs often incorpo-

rate different shortcuts. One can build RTPDs in STCH and MTCH by storing each of RTPD

with same amount of space as shown in Table 5.2. However, the improvement is only a few

microseconds, thus omitted. We also remark that the MTCH can be extended to speed up only

certain period of the time domain (e.g., during the peak hours: 6 - 10 AM or 16 - 19 PM )

or further improved by adding more layers with smaller tu. However, how to efficiently choose

upper bound tu and split the time domain is left as future work.

5.4.2.3 Tolerance of More Accurate TTF

In Figure 5.6, we reproduce the experiments on NY-5 datasets, where the travel times are

evaluated every 5 mins. Clearly, our proposed algorithms are tolerant to the more accurate

TTF. In addition, unlike the NY dataset, both F-MTCH and F-MTCH(TCPD) outperform the

STCH approaches. This is because the TCH constructed for tu = 1h and 2h in MTCH can be

more efficiently evaluated than STCH (i.e., tu = 4h).

5.4.2.4 Query Statistics

Table 5.3 provides more insights. For the searches that are conducted on TCH, B-TCH(L12)

significantly improves B-TCH due to the smaller number of nodes generated and expanded using

the landmark heuristic. Although F-TCH(CPD) requires smaller number of nodes generated

and expanded, it still performs worse than B-TCH as the number of first move extractions is

large, even after applying the cost caching discussed earlier. On the other hand, F-TCH(TCPD)

retrieves the first moves on the optimal tch-paths which significantly reduces #FirstMove. Also,
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Map Stat
B-TCH F-TCH B-STCH F-STCH B-MTCH F-MTCH
- L12 L12 CPD TCPD RTPD - TCPD - TCPD

NY

#Gen 409.030 238.549 194.885 146.910 128.333 231.202 73.821 191.762 60.718
#Exp 188.190 87.927 52.343 33.512 26.761 127.227 16.281 111.311 13.217
#FM - - - 437.900 104.098 - 72.327 8.354 71.835
#RT - - 469.593 320.587 263.588 - 155.519 - 126.272
Time 135.462 82.297 72.773 143.242 65.966 50.428 53.158 32.372 45.806 30.484

GC

#Gen 157.091 125.512 89.900 75.883 68.356 115.409 48.613 102.002 41.311
#Exp 98.240 72.178 43.035 33.852 28.400 78.561 19.883 71.528 16.536
#FM - - - 287.394 61.682 - 49.488 10.170 54.765
#RT - - 265.317 202.391 168.863 - 113.855 - 91.703
Time 34.048 30.106 21.637 36.205 19.509 17.188 21.747 11.182 19.940 13.822

SYD

#Gen 396.275 283.144 243.200 200.175 163.915 258.679 104.310 219.491 84.920
#Exp 203.671 123.877 81.389 60.884 43.175 151.042 28.513 134.567 22.991
#FM - - - 857.854 130.283 - 98.494 11.558 97.879
#RT - - 823.346 624.071 447.878 - 274.051 - 218.711
Time 140.094 107.453 104.462 235.888 86.982 72.609 76.488 50.362 71.604 46.152

MEL

#Gen 558.484 420.292 394.894 333.293 262.745 374.386 161.660 322.278 133.948
#Exp 293.440 189.117 139.651 108.987 73.811 219.413 43.616 196.001 36.044
#FM - - - 1630.162 193.499 - 143.565 13.761 139.118
#RT - - 1592.497 1283.166 909.075 - 520.653 - 428.705
Time 227.828 184.182 215.427 570.812 175.058 146.730 126.825 92.807 122.892 93.952

NY-5

#Gen 427.587 248.241 201.013 151.863 133.485 238.443 75.512 195.478 61.123
#Exp 191.516 88.954 51.879 33.236 26.944 129.906 16.548 112.625 13.321
#FM - - - 354.327 106.424 - 73.479 8.428 72.187
#RT - - 475.553 325.475 270.539 - 157.568 - 126.871
Time 173.661 101.496 94.273 148.735 78.185 62.465 71.651 37.887 57.855 31.426

Table 5.3: Average runtime (Time) in µs and number of nodes generated (#Gen) and ex-
panded (#Exp) by each algorithm. For forward search, we report the number of reachability
tests (#RT) and first move extractions (#FM) performed using Reach and different CPDs.

#Generated and #Expanded are also reduced because TCPD computes tighter lower bounds.

Overall, F-TCH(TCPD) outperforms the other heuristics in terms of average runtime for all

maps, and RTPD further improves the performance by extracting each first move in constant

time. For the searches that are conducted on STCH and MTCH, both B-STCH and B-MTCH

outperform B-TCH, because building the TCHs for small time period (i) has smaller number

of shortcut edges; (ii) stores tighter lower and upper bound; and (iii) maintains much smaller

number of interpolate points on each TTF. In addition, TCPD heuristic further improves the

performance for STCH and MTCH, and achieves speed up against baseline algorithm B-TCH

by 3-6 factors.

5.5 Discussion

We show how search in time-dependent road networks can be substantially improved by applying

several heuristics. Forward search using heuristics based on landmarks or CPDs is able to

improve upon the usual bidirectional search. We also show that we can improve TCHs by
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building a set of TCHs to be used depending on the start time, and a given upper bound on the

shortest path. The resulting TCHs allow for faster query processing, using a heuristic search to

quickly find an upper bound, and then choosing the appropriate TCH to answer the query.

Regarding bounded-suboptimal search, there exist many techniques that compute solutions

faster at the cost of slightly suboptimal paths, such as TD-CRP [148], TD-CFLAT [149], and

ATCH [85]. The CPDs can also be used to find bounded-suboptimal paths [48], e.g., whenever

we compute a lower bound using CPDs, we can find a solution by following the path extracted

from CPDs. We believe the TCPDs and RTPDs should have the same advantage and can be

easily extended for bounded suboptimal search, which we leave as future work.



Chapter 6

Beyond Pairwise Reasoning in

Multi-Agent Pathfinding

6.1 Overview

Conflict-Based Search (CBS) [33] is a state-of-the-art algorithm for multi-agent pathfinding in

the discretised grid map. Thus far, the CBS algorithm and its enhancements only reason about

incompatibility between at most two agents at a time. In this chapter, we extend CBS heuristics,

applicable at every node, to more than two agents. Our proposed cluster reasoning utilises mutex

propagation to reason about clusters of more than two agents, which not only derive stronger

bounds for CBS, but also generate new kinds of bypasses that help CBS to reduce the number

of conflicts. In addition to that, our cluster reasoning technique can seamlessly integrate with

existing enhancements. In broad strokes, our strategies are:

• For a given CT node of CBS, we compute the WDG heuristic h as explained in Sec-

tion 2.3.4. For the agents that are not considered in the WDG heuristic, we select the

most “important” agent ai to detect a cluster or bypass.

• For a select agent ai, we consider the current path Pi as guidance and iteratively perform

mutex propagation between ai and other agents aj in conflict with Pi in order to detect

clusters or bypasses.

• For each cluster found, we compute and increase the heuristic value h. Alternatively, we

replace the path of ai with Pi if a bypass of ai is found. The above steps repeat until all

agents have been selected.

97
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Symbol Description
G A four-connected grid map of a MAPF instance.
V A set of vertices in the input graph G.
E A set of edges in the input graph G.
A A set of k agents of a MAPF instance and A = {a1, . . . , ak}.
ai An agent in a MAPF instance and ai ∈ A.
si The source location of agent ai in a MAPF instance and si ∈ V .
di The destination location of agent ai in a MAPF instance and di ∈ V .
Pi A path that consists of a sequence of vertices ⟨si, · · · , di⟩ for agent ai.

Σ|Pi| The cost (i.e., length) of a path Pi i.e., Σ|Pi| = |Pi| − 1 .
t The discretised timestep in a MAPF instance.
N A search/CT node in the CBS.

N.constraints A set of constraints in a CT node N .

N.P A set of cost-minimal paths (one for each agent) that satisfies N.constraints
without considering other agents in a CT node N .

N.P(ai) The path for agent ai in the current paths N.P of a CT node N .
N.conflicts A set of conflicts in the current paths N.P of a CT node N .
N.cost The SIC of the current paths N.P of a CT node N .
MDDi The Multi-value Decision Diagram for an agent ai in a CT node N .

C A conflict cluster in the current paths N.P of a CT node N and C ⊆ A.

Table 6.1: Summary of the notations used in this chapter

We give a complete description of our cluster reasoning algorithm, and then evaluate on pop-

ular MAPF benchmarks using the same instances published on MovingAI repository.1 Our

principal point of comparison is CBSH2-RTC, the current state-of-the-art variation of CBS.

Through a range of experimental results, we demonstrate that our approach significantly out-

performs CBSH2-RTC in terms of runtime, CT node expansions, and the number of instances

solved, particularly on dense maps.

6.2 Preliminaries

In the classic Multi-Agent PathFinding (MAPF) problem, we consider the underlying workspace

as a four-connected grid map. Time is also discretised into unit-sized timesteps and at each

timestep agents are allowed to move to an adjacent vertex, or else wait, at their current location.

Given a set of agents with source s and destination d, the objective is to find a set of collision-

free paths, one for each agent, that minimises the sum of individual costs. In this chapter, we

follow the definitions and terminologies defined in Section 2.3. Additionally, the symbols used

in this chapter are shown in Table 6.1.

This chapter focuses on enhancing Conflict-Based Search (CBS) [33] by extending its heuris-

tics to consider the incompatibility of more than two agents. Our techniques exploit mutex

propagation [35], a successful pairwise reasoning technique that we extend to clusters of more

1https://movingai.com/benchmarks/mapf

https://movingai.com/benchmarks/mapf
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Figure 6.1: (i) A MAPF instance with three agents. (ii) Examples of MDDs for three agents
and the results of mutex propagation between agent a2 with agent a1 and a3. The initial
and propagated mutexes are shown in dashed blue arcs and solid red arcs, respectively. The
incompatible nodes between a2 and a1 (resp. a3) are coloured in blue (resp. orange). All paths

of a2 have incompatible nodes and thus must collide with either a1 or a3.

than two agents. A detailed discussion on mutex propagation, the CBS algorithm, and its recent

enhancements can be found in Section 2.3.4

6.3 Our Approach

While the best heuristic for CBS is quite sophisticated, it only ever reasons about the interactions

of pairs of agents. In this work, we detect and make use of interactions between three or more

agents to improve heuristics and find bypasses.

Definition 6.1 (Conflict Cluster). Given a CT nodeN , a conflict cluster C is a set of agents such

that, considering every agent a ∈ C with a set of cost-minimal paths that satisfy N.constraints,

there exist no conflict-free assignments of paths for these agents.

Example 6.1. Figure 6.1 shows a conflict cluster containing three agents, where the current

paths (shown in solid lines) of a2 and a3 collide at C3. Although switching a2 to another cost-

minimal path (e.g., the path shown in the dashed line) avoids the conflict with a3, it conflicts

with another agent a1. In fact, there exists at least one conflict between two or more agents, no

matter what cost-minimal paths the agents choose. Thus, the optimal solution requires at least

one agent to wait for at least 1 timestep.

The critically important feature of conflict clusters is that, if a CT node N has a conflict

cluster C, then the SIC of any collision-free paths that satisfies N.constraints is guaranteed to

be larger than the cost of N because some pair of agents in C must conflict, i.e., the cost must
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Algorithm 5: Compute Heuristic and Bypass

Input: N : a current CT node of CBS.
Output: Heuristic value h for a CT node.

1 hp,EAp ← computeWDGHeuristic(N);
2 hc,EAc ← inheritClusterFromParent(N);
3 EA ← EAp ∪ EAc ;
4 SG ← buildConflictStateGraph(N);
5 while am ← getMaxConflictAgent(SG ,EA) do
6 R ← findClusterOrBypass(am,EA, N);
7 if R ≡ ConflictCluster(C) then
8 appendCluster(N , C);
9 EA ← EA ∪ C;

10 hc ++;

11 else if R ≡ Bypass(Pm) then
12 updatePathAndConflict(N, am, Pm);
13 updateConflictStateGraph(N,SG);

14 return h← hp + hc;

increase by at least 1. However, the WDG heuristic fails to capture this case, since conflict-free

paths exist for any pair of agents while ignoring the other agents.

6.3.1 Computing Heuristic and Bypass

Our approach iteratively detects the conflict clusters for a CT node N . Whenever our algorithm

finds a conflict cluster, we increment the heuristic value by one and exclude the agents in

this cluster to ensure the clusters detected are independent of each other. As a byproduct,

our approach may also explore a bypass, a cost-equivalent path that satisfies the constraints

N.constraints and reduces the total number of conflicts N.conflicts. Here, we explain the high-

level idea of computing an admissible heuristic by integrating the best pairwise heuristic WDG

and the heuristic value of conflict clusters found, as well as adapting the bypasses based on the

CBS framework. The details of detecting conflict clusters and bypasses will be explained later.

The pseudo-code of our approach for computing an improved heuristic or bypass is shown

in Algorithm 5. Similar to CBS, given a CT node N , our algorithm first computes the WDG

heuristic following [37] and returns the pairwise heuristic value hp and a set of agents EAp

considered in WDG (i.e., agents in the dependency graph GD) (line 1). Our algorithm uses

N.clusters to store a set of conflict clusters detected in N . Before detecting the new conflict

clusters, our algorithm inherits the conflict clusters EAc from the parent CT node of N and

their heuristic value hc (explained later in the section) in order to avoid recomputation (line 2).

Both EAp and EAc are appended to a set EA, which maintains the set of excluded agents

(line 3). This is to ensure that the clusters detected are independent of each other and with the

agents used in the WDG heuristic.
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The algorithm then begins to compute our cluster heuristic and bypass by building a conflict

state graph SG (line 4). This graph is a simple undirected graph that maintains an edge between

every pair of conflicting agents in N . We use this graph to efficiently track the conflicts in the

current plan N.P. The algorithm then calls getMaxConflictAgent which iteratively accesses the

agents in SG that have not been excluded and returns the agent am (line 5) that has the

maximum number of conflicts with other non-excluded agents ai (i.e., ai ̸∈ EA). We choose

the agent am with the maximum number of conflicts because such an agent is more likely to

find a smaller conflict cluster, thus potentially leading to a better heuristic value. The function

getMaxConflictAgent does not consider an agent that was returned earlier and returns null when

all agents are either excluded or were returned earlier (in which case the while loop terminates).

The algorithm then calls the function findClusterOrBypass (to be detailed later) which returns

either a detected conflict cluster involving am or a bypass for agent am (line 6). Based on the

returned result R, the algorithm proceeds as follows.

• If R is a conflict cluster (line 7-10), the algorithm appends the conflict cluster C to

N.clusters. All agents in C are marked as excluded agents, and the cluster heuristic hc is

increased by one, because resolving the conflict in a cluster must increase SIC by at least

one (see Definition 6.1 and the following example).

• If R is a bypass (line 11-13), the algorithm takes the bypass path Pm and updates N by

changing the path of am to Pm. The conflicts of the old path are also removed and replaced

with new conflicts of Pm. The conflict state graph SG is also updated accordingly.

When the while loop terminates, the algorithm returns the heuristic value (i.e., hp + hc).

Note that our algorithm could work without applying WDG heuristic, hp. However, WDG is a

relatively cheap yet effective heuristic and helps improve the performance overall.

6.3.1.1 Inherit Clusters from Parent Node

Since CBS only constrains a portion of agents (mostly one agent only) when generating child CT

nodes, the incompatibility among other agents, excluding constrained agents, is not changed.

Hence, we inherit the information (similar to the WDG heuristic) to avoid recomputation. To

inherit a conflict cluster C from parent CT node Pr(N) (at line 2), we need to ensure two

conditions: (i) the path cost of every agent ai ∈ C of the current CT node N and its parent

CT node are exactly the same (i.e., Σ|N.P(ai)| = Σ|Pr(N).P(ai)|) and (ii) every agent ai ∈ C

is a non-excluded agent (i.e., ai ̸∈ EA). To ensure (i) and (ii), we iteratively scan through

Pr(N).clusters and filter out the clusters if Σ|N.P(ai)| ̸= Σ|Pr(N).P(ai)| or ai ∈ EA. For each

inherited cluster, we mark these agents as excluded and increase the cluster heuristic hc by one

(line 2).
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Theorem 6.2. Given a CT node N , the heuristic h = hp + hc computed by Algorithm 5 is

admissible.

Proof. The pairwise heuristic hp is computed by considering a subset of agents Ap ⊆ A, and

hp is an admissible heuristic of CT node N as shown by Li et al. [37]. Algorithm 5 excludes

these agents and computes the cluster heuristic hc by detecting the conflict clusters from agents

Ac = A \Ap, thus hp and hc are disjoint. By Definition 6.1, each conflict cluster must increase

the cost of CT node N by at least one. Thus, hc is also admissible as each conflict cluster C ∈ Ac

detected is independent of other clusters. Therefore, h = hp + hc is an admissible heuristic.

6.3.2 Finding Conflict Cluster or Bypass

To find a conflict cluster or bypass for an agent am, one can incrementally join the MDD of

am with other non-excluded agents ac (i.e., ac ̸∈ EA) and remove MDD nodes if there is a pair

of agents in conflict. We find a conflict cluster if the joint MDD contains no feasible paths for

each agent to reach its destination. Alternatively, we may explore a bypass of am from these

feasible paths in the joint MDD. However, this naive approach has two drawbacks: (i) joining

the MDDs exponentially increases the size of the joint MDD; and (ii) exhaustively checking all

non-excluded agents may be time-consuming. In this work, we consider a more sophisticated

algorithm to identify the cluster and bypass using mutex propagation. Recall that for a pair of

MDD nodes that are mutex, the following property holds:

Property 6.3. Iff two nodes from different MDDs at the same level are mutex, there exists

no pair of conflict-free paths that traverse through the two nodes and reach their destination

locations at their individual minimum cost [35].

The key idea of our techniques is to use mutex propagation to identify incompatible nodes

between a pair of MDDs according to the definition below:

Definition 6.4 (Incompatible Node). Given a pair of MDDs MDD i and MDDj for agents ai

and aj , a MDD node ni at level t from MDD i is incompatible with MDDj iff ni is mutex with

all MDD nodes at level t from MDDj .

According to Property 6.3, if an MDD node ni from MDD i is incompatible with MDDj , all

possible cost-minimised paths of ai using ni have conflicts with all cost-minimised paths of aj .

Our algorithm maintains a path Pm for am and uses it as guidance to detect a conflict cluster

or bypass, by incrementally removing nodes of MDDm that are incompatible with the MDDs

of the agents whose paths conflict with Pm. Next, we explain the details of our algorithm.

Algorithm 5 calls the function findClusterOrBypass to find a conflict cluster or bypass for

input agent am. The pseudo-code of this algorithm is shown in Algorithm 6. To begin, the
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Algorithm 6: Find Cluster or Bypass

Input: am: a selected agent, EA: excluded agents, N : a current CT node.
Output: a conflict cluster C or a bypass Pm for agent am
Initialisation: C ← {am}; PA← ∅

1 Pm ← getPath (am, N);
2 MDDm ← getMDD(am, N);
3 CA ← getConflictAgents(am, Pm, N,EA);
4 for each ac ∈ CA \ PA do
5 PA ← PA ∪ {ac};
6 MDDc ← getMDD(ac, N);
7 M ← mutexPropagation(MDDm,MDDc);
8 if M ̸= ∅ then
9 C ← C ∪ {ac};

10 deleteNodes(MDDm,M);
11 if MDDm = ∅ then
12 return conflict cluster C ;

13 if Pm ̸∈ MDDm then
14 Pm ← getMinConflictsPath(MDDm);
15 goto line 3;

16 return |CA| reduced ? Bypass(Pm) : null;

algorithm initialises the conflict cluster C to contain the agent am and initialises the processed

agents PA to be empty. It retrieves the current path Pm of am (line 1). The MDD of am,

denoted as MDDm, is then built which satisfies all constraints in N (line 2). The algorithm

then calls getConflictAgents, which considers all non-excluded agents in N and returns the set

of non-excluded agents CA that conflict with am (line 3).

In each iteration, the algorithm iteratively accesses the agents in CA that have not been

processed before. For each such agent ac ∈ CA \ PA, we build the MDD of ac, denoted as

MDDc (line 6). The algorithm performs mutex propagation between the MDDm and MDDc

and returns the incompatible nodes M of MDDm which are mutex with every MDD node of

MDDc in the same level (line 7). If M is not empty, we append the agent ac into the conflict

cluster C (line 9) and recursively delete every incompatible node n ∈ M (and the connected

edges) from MDDm (line 10). After deleting the incompatible nodes of MDDm, it is possible

that MDDm becomes empty or the current path Pm is not valid in MDDm as some of the nodes

have been deleted. We handle each case as follows.

• If the MDDm is empty, this implies that C is a conflict cluster which is returned (line 11-

12).

• If the Pm ̸∈ MDDm, the algorithm finds an alternative path from MDDm that has the

minimal number of conflicts with the other agents (lines 13 and 14). Since path Pm is

updated, there may be new agents that are in conflict with this new path. So, the algorithm
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goes to line 3 and re-computes CA. Since CA is changed, the algorithm continues to

iteratively process the agents in CA \ PA (line 4 onwards).

When the algorithm has processed all agents in CA \PA, it terminates (line 16) by returning

the bypass Pm if this bypass has fewer conflicts than the original path N.P(am). Otherwise,

it returns null, indicating that no cluster or bypass is detected. The bypass Pm returned by

Algorithm 6 is an alternative path retrieved from MDDm, which avoids traversing through

incompatible nodes. Since the MDDm satisfies every constraint on am and has the same cost

as N.P(am), Pm is a valid bypass.

To find the minimum-conflict path (line 14) and update the conflict agents (line 3), we must

repeatedly detect conflicts between am and other agents, which can be time-consuming. There-

fore, we use a labelling method that labels the conflict agents on each node and edge of MDDm.

Every time the algorithm extracts the path, we run a breadth-first search from source to destina-

tion of MDDm and compute the minimum number of conflicts and its predecessor on each node

visited. The minimum-conflict path and its conflict agents can be easily retrieved from a back-

ward extraction following the predecessor node. Note that we only label MDDm in Algorithm 6

once (when the algorithm reaches line 14 for the first time).

Theorem 6.5. The cluster C returned by Algorithm 6 is a conflict cluster, according to Defi-

nition 6.1.

Proof. Mutex propagation of MDDc and MDDm removes from MDDm only the nodes which

are incompatible with all paths in MDDc. So unless the agent ac increases its path length,

the paths removed for am from MDDm must conflict with ac. If MDDm becomes empty, then

clearly all paths of the current path length of am must conflict with some other agents in the

cluster. Hence, at least one agent in the cluster must increase its path length by one to avoid

conflicts.

Example 6.2. Consider the example from Figure 6.1. Assume the paths in N.P for a1, a2

and a3 are the solid blue, green and orange lines in Figure 6.1 (i), respectively. Algorithm 6

starts with am = a2 and initialises C = {a2}. The algorithm finds the set of conflicting agents

CA = {a3} because a2 and a3 conflict. It then processes a3 and performs mutex propagation

between MDD2 and MDD3. The incompatible nodes (e.g., coloured orange in Figure 6.1 (ii)) of

MDD2 are removed and a3 is appended to C. Since the path of a2 no longer exists in MDD2,

the algorithm then updates its path in N.P to be the minimal conflicts path (e.g., the dashed

green line). This new path collides with a1. The algorithm returns to line 3 and finds conflicting

agents CA = {a1}. Agent a1 is processed and appended to C. MDD2 becomes empty after

removing incompatible nodes (e.g., coloured blue in Figure 6.1 (ii)) from MDD2. The algorithm

returns the conflict cluster C = {a1, a2, a3}.
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6.3.3 Optimisation

In this section, we introduce optimisation techniques that improve the cluster heuristic hc and

speed up our algorithm.

6.3.3.1 Solving the Cluster

Recall that Algorithm 5 increases the cluster heuristic hc by one (line 10) whenever it detects

a conflict cluster C. However, to get a better heuristic value, we can solve the cluster as a

sub-instance to improve the lower bound of C. Therefore, we take the paths and constraints

of each agent ai ∈ C from the current CT node N , and run sub-CBS search to solve C. To

restrict the computation cost of this optimisation, when solving a cluster, we also set a limit

|N | on the number of CT nodes expanded by the sub-CBS. By default, we use the same setting

(i.e., |N | = 10) as used in WDG heuristic [37]. Let ∆C be the increase of the minimal f -value

in the open list after running sub-CBS for this cluster. We increment the heuristic by ∆C

(i.e., Algorithm 5 line 10 : hc += ∆C). It is easy to see that the correctness of Theorem 6.2 is

preserved.

6.3.3.2 Memoisation

The algorithms have two operations that can be repetitively performed in the same or different

branches of a CT tree: (i) computing the heuristic for the same conflict clusters using sub-CBS

described above; and (ii) performing the mutex propagation between the same pair of MDDs

(Algorithm 6 - line 7). We say that two conflict clusters (resp. MDDs) are the same if the two

clusters (resp. MDDs) have the same agents with exactly the same constraints for each agent.

In order to speed up the search, we apply memoisation by maintaining a centralised database in

CBS. To avoid (i), we simply maintain a hash table to cache the increased cost ∆C of a conflict

cluster C by hashing all constraints ∈ N.constraints of agents in C as a key. However, avoiding

(ii) needs some modifications detailed below.

Algorithm 6 takes the MDD of am and performs mutex propagation with the MDDs of the

conflicting agents ac ∈ CA. In each iteration, the incompatible MDD nodes of MDDm are

removed which results in a smaller MDDm. Therefore, we cannot cache the results of mutex

propagation between MDDm and MDDc as MDDm changes after each iteration. To overcome

this issue, we propose to apply a reusable version of mutex propagation. This reusable mutex

propagation does not consider the updated MDDm, but only considers the original unmodified

MDDm and MDDc from the CT node N . Let us denote the unmodified MDDm as MDD ′
m.

The algorithm begins with MDDm of agent am. Every time the algorithm performs mutex

propagation between am and ac, it performs the reusable mutex propagation and returns the
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incompatible nodes of MDD ′
m to MDD ′

c. We use this result to remove MDD nodes from MDDm

until MDDm becomes empty or there is no other valid conflicting agent ac. Although this lazy

strategy weakens mutex propagation (i.e., the reusable mutex propagation may be able to detect

only a subset of incompatible nodes), we can now cache the incompatible nodes between am

and ac based on the constraints of the two agents. In the experiments, we show that the

reusable mutex propagation almost always leads to a speedup as it does not lose too much

mutex information and can reuse many mutex calculations.

6.4 Experiments

In this section, we compare our algorithm against the state-of-the-art variation of CBS [34]

taken from the repository2 of the authors. This algorithm applies all leading optimisation tech-

niques including: (i) high-level heuristics: weighted pairwise dependence graph (WDG) [37];

(ii) symmetry reasoning techniques: target reasoning, generalised rectangle and corridor rea-

soning [34]; and (iii) prioritising and bypassing conflicts [38, 129]. We use WDG to refer to this

algorithm. Our algorithm is built on top of WDG and, in addition, uses cluster heuristic and

bypass (CHBP). It is shown as WDG+CHBP in the experiments. We also compare the algo-

rithm when only cluster heuristic is used and the bypass is ignored (i.e., WDG+CH) or when

only the bypass returned by Algorithm 6 is used but the cluster heuristic is ignored (shown as

WDG+BP). We do not compare our algorithm against the LR heuristic [138] because it requires

us to modify the definition of MAPF by limiting the maximum cost of the paths.

6.4.1 Benchmarks

We conduct experiments on four diverse maps taken from the widely used 4-connected grid map

benchmarks3, described by Stern et al. [3]. These maps cover different real-life scenarios.

• Random map (random-32-32-20): a 32×32 grid map with 20% random blocked cells. The

number of agents on the map is set to 20, 30, ..., 70.

• Empty map (empty-32-32): an empty 32×32 grid map. The number of agents in the map

is set to 50, 70, ..., 150.

• Warehouse map (warehouse-10-20-10-2-1): a 161×63 grid map which simulates the ware-

house environment with 10×20 stacks. Each stack has 10×2 grids. The number of agents

is set to 30, 50, ..., 130.

2https://github.com/Jiaoyang-Li/CBSH2-RTC
3https://movingai.com/benchmarks/mapf

https://github.com/Jiaoyang-Li/CBSH2-RTC
https://movingai.com/benchmarks/mapf
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Figure 6.2: Cactus plots for runtime in seconds (top row), scatter plots for runtime in seconds
(middle row), and scatter plots for CT node expansions (bottom row). If an approach fails to
solve an instance in 60 seconds (i.e., unsolved instance), its runtime in the figure is shown as
60 seconds and its number of node expansions is shown to be 105 (all solved instances have

runtime less than 60 and node expansions less than 105).

• Game map (den520d): a 256×257 grid map from a video game. The number of agents is

set to 40, 60, ..., 140.

The benchmark contains, for each map setting, two sets of instances each containing 25

instances: the first set generates agents with randomly selected start and destination locations;

the second set generates agents with an even mix of short and long distances between their

start and destination locations. We run every instance for 1 minute and report the overall

performance. The instances that cannot be solved in 1 minute by an algorithm are considered

unsolved. All algorithms (including the competitor algorithms) are implemented in C++ and

compiled with -O3 flag. We conduct all experiments on a Nectar research cloud with 128GB of

RAM running Ubuntu 18.04.4 LTS (Bionic Beaver). For reproducibility, our implementation is

available online.4

4https://github.com/bshen95/CBSH2-RTC-CHBP

https://github.com/bshen95/CBSH2-RTC-CHBP
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Figure 6.3: Effect of optimisation techniques on runtime (sec) of our final algorithm
(WDG+CHBP). No Solving is when the optimisation to solve the cluster is not applied and No

Memoisation is when the memoisation is not applied.

6.4.2 Runtime and CT Node Expansions

The Top row in Figure 6.2 shows the cactus plots for runtime (sec) of different algorithms.

Using cluster heuristic and bypass (WDG+CHBP) significantly improves the performance on

hard instances (note the log scale on the y-axis). While the cluster heuristic (WDG+CH) leads

to improvements over WDG, bypassing alone (WDG+BP) does not help solve hard instances.

This is because CHBP mainly benefits from increasing heuristic value whereas bypassing itself

neither considers heuristic value nor excludes the agents of detected clusters which results in

degraded performance. The scatter plots in the middle row (Figure 6.2) show detailed runtime

comparisons versus the baseline WDG. The three diagonal lines show the performance improve-

ment compared to WDG (1x, 5x or 10x), i.e., a point under the diagonal line 5x indicates

that our algorithm is more than 5 times faster than WDG on that instance. The scatter plots

show that our methods improve upon the baseline for most of the instances and rarely show

significantly worse runtime. Importantly, our methods are able to solve many instances that

are unsolved by the baseline (the instances shown at 60 seconds on the x-axis). There are some

instances which we fail to solve but the baseline can solve (illustrated by the points at 60 seconds

on the y-axis). Note that the number of such instances is much smaller than the instances that

the baseline cannot solve but our algorithm can solve. Overall WDG, WDG+BP, WDG+CH

and WDG+CHBP solve 875, 859, 896 and 937 instances, respectively.

The scatter plots on the bottom row in Figure 6.2 show detailed comparisons of # CT node

expansions of our algorithms with WDG. Again, our methods almost always lead to fewer CT

node expansions.

6.4.3 Ablation Study on Optimisation Techniques

Figure 6.3 shows the scatter plots for the runtime of our final algorithm (WDG+CHBP) versus

two modified versions of the algorithm without applying optimisation techniques. The diagonal

lines show how slow the two versions are compared to our final algorithm WDG+CHBP, i.e., a

point above the diagonal 2x shows an instance where the algorithm is more than 2 times slower
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Figure 6.4: ∆fmin=fmin(WDG+CHBP)− fmin(WDG). Instances solved by both WDG and
WDG+CHBP are removed as they have ∆fmin = 0. We show instances solved by only WDG

(blue), solved by only WDG+CHBP (red) and unsolved by both (grey).

than WDG+CHBP. Clearly, both versions show worse performance than our final algorithm,

which demonstrates the effectiveness of our proposed optimisations. In addition, No Solving is

significantly worse than WDG+CHBP on many instances. This shows that solving the cluster

is the most important enhancement as it significantly increases the heuristic value for some of

the clusters detected. Although not as significant, memoisation also plays an important role by

avoiding repeatedly solve the same clusters and perform mutex propagation between the same

pair of MDDs.

6.4.4 Effect of Heuristic Value and Insights

In Figure 6.4, we show ∆fmin=fmin(WDG+CHBP)− fmin(WDG) where fmin(X) is the mini-

mum f-value (f = N.cost +h) in the open list when the algorithm X terminates. ∆fmin shows

the difference in heuristic values of the two algorithms indicating how much the cluster heuristic

is able to improve the search progress compared to WDG. Note that while it cannot make the

heuristic worse at a CT node, it does change the CBS search tree which may lead to a smaller

fmin for WDG+CHBP for some instances compared to WDG. Figure 6.4 shows that ∆fmin is
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Map
CBS Search Compute WDG Compute CHBP

Total(s) PH(ms) Total(s) PH(ms) Total(s) PH(ms)

Random 1094.39 0.54 1158.83 0.57 1452.25 0.71

Empty 1061.40 0.50 1342.00 0.63 2513.68 1.23

Warehouse 2826.13 18.53 932.69 6.12 1334.28 8.75

Game 2972.42 32.93 627.17 6.95 1084.17 12.01

Table 6.2: Performance breakdown of WDG+CHBP. We show the total runtime (Total) and
the average runtime per heuristic calculated (PH) for each component in WDG+CHBP.

mostly positive and there is typically a significant increase in fmin for WDG+CHBP compared

to WDG, especially on the empty and warehouse maps. Also, note that WDG+CHBP solves

many instances that WDG cannot solve. On the other hand, there are very few instances that

only WDG can solve.

Table 6.2 shows the average runtime per heuristic calculated of the various components: CBS

search, that is everything else than heuristics and bypass calculation; Compute WDG, the time

to compute the WDG heuristic; and Compute CHBP, the time to compute our heuristic and

bypasses. Clearly, the more complex heuristics are more expensive on average than the WDG

heuristic, but never more than 2 times more expensive. They take less time than the remaining

components on the larger maps. Overall of course the computation cost of this heuristic almost

always pays off in terms of reduced high-level search.

6.5 Discussion

In this work, we propose new techniques to compute heuristics by reasoning about incompatibil-

ity beyond two agents. It dynamically finds conflict clusters and bypasses at the same time. We

substantially improve CBS by solving more instances in limited time and reducing the high-level

node expansion and runtime to solve problems. For instances with a timeout failure, we push

the lower-bound (fmin) to a significantly higher value. We show that reasoning for conflict clus-

ters is essential to solve larger MAPF problems. Future works include capturing more complex

clusters, integrating conflict cluster heuristics into the integer program of the WDG heuristic,

and designing strong methods to efficiently resolve all conflicts in clusters.



Chapter 7

Tracking Progress in Multi-Agent

Pathfinding

7.1 Overview

In recent years, there has been a growing industrial interest in MAPF, leading to a significant

increase in publications across various venues. Despite the community’s effort in creating stan-

dardised MAPF benchmarks [3], tracking progress on these benchmarks remains challenging

due to several issues. To address these challenges and make it easier for new researchers to

enter the field, we have developed a new set of methodological and visualisation tools. These

tools enable comparison of a broad range of MAPF methods and establish the pareto-frontier

that currently defines the state-of-the-art. In broad strokes:

• We break down the benchmarks suites into three different levels: (i) Domain and Map-

level; (ii) Scenario-level; and (iii) Instance-level. At the lowest instance-level, we identify

the necessary data to collect for covering different types of MAPF algorithms in the

existing literature.

• For each level of benchmarks, we provide a list of important aspects that we keep tracking

on, as well as automatic visualisation tools to assist researchers in generating insight and

systemic analysis from results data.

• For all the results we collect, we make them publicly available and allow other researchers

to download the results at each level. Additionally, we provide submission interfaces and

automated tools to enable other researchers to submit and compare their algorithms.

We have implemented our system as a website and conducted a comprehensive set of ex-

periments, including many state-of-the-art MAPF algorithms. In the end, we systematically
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analyse the collected results and demonstrate how our website can be used to explore the new

pareto-frontier, as well as the insights for the submitted MAPF algorithms.

7.2 Background and Literature Review

In the classic MAPF problem, a team of cooperative agents moves across a 4-connected grid

map. Agents are allowed to move from a current grid cell (or vertex) to another adjacent grid

cell, or else wait at their current location. Each move or wait action has unit cost. Time is also

discretised into unit-sized steps. We are asked to compute paths to move every agent, from its

source position to its destination location. The paths need to be collision free, which means

agents do not collide with static obstacles on the map or with each other. Performance for

classical MAPF is measured in a variety of ways. The most common metrics are the number of

problems solved, the success rate (percentage of problems solved for a fixed number of agents

within the fixed runtime), the plan cost (sum of the individual costs), and the runtime.

In this chapter, we follow the definitions and terminologies defined in Section 2.3. A com-

prehensive survey of MAPF algorithms is presented in Section 2.3.1 - 2.3.2, covering optimal,

bounded suboptimal, and unbounded suboptimal MAPF algorithms. Next, we discuss the cur-

rent benchmarks, as well as the limitations of existing works and large-scale evaluations.

7.2.1 Existing Benchmarks and Limitations

Early MAPF research (and even some recent papers) typically conduct experiments over indi-

vidually generated problem sets, e.g., [89, 97, 114]. Historically these problem sets have not

been published as separate artefacts, which creates difficulties trying to reproduce experimental

data, even if reference implementations of the original works are made available. In response to

these challenges the MAPF community developed a standard benchmark suite [3], to test the

performance of (classical) MAPF solvers across 33 maps from 7 different types of grid domains:

(i) Game grids, originating from real video games; (ii) City maps, originating from layouts of

real cities; (iii) Maze maps, synthetically generated and featuring different corridor sizes; (iv)

Room maps, synthetic grids with open areas connected by narrow entrances; (v) Empty maps,

open grids without obstacles; (vi) Random maps, synthetic grids with random obstacles; and

(vii) Warehouse maps, synthetic maps imitating automated warehouse environments.

Each map has 25 random and 25 even scenarios, each of which is associated with several

instances. A random scenario includes randomly generated source and destination locations for

up to 1000 agents (instances). On even scenarios, source and destination locations have an even

distribution on distance, and the total number of location pairs varies across different maps,
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Domains Maps Instances Compared algorithms

CBSH2-RCT 7 8 1,200 1
CBSH2-RCT-CHBP 4 4 1,200 1

ID-CBS 7 32 3,380 1
Lazy-CBS 3 4 1400 3

BCP-MAPF 6 16 4,430 2
EECBS 5 6 1,200 3

FEECBS+ 7 8 1,800 1
PIBT2 5 10 21,075 6
LNS2 7 33 825 3

LaCAM 5 12 5,000 6
Total Available 7 33 1.5 M —

Table 7.1: The number of domains, maps, instances and compared algorithms in recent MAPF
research.

ranging up to 7000 agents (instances). There are more than 1.5 million location pairs in total,

which means the same amount of problem instances. Table 7.1 gives a complete summary.

The computational burden required to run the whole benchmark is large, which means re-

searchers only compare proposed approaches against a small number of contemporaries and

only on a limited subset of problem instances. Table 7.1 shows a summary of reported results

for a recent set of leading optimal and suboptimal solvers: CBSH2-RCT [34], CBSH2-RCT-

CHBP [50], ID-CBS [92], Lazy-CBS [41], BCP-MAPF [39], EECBS [104], FEECBS+ [106],

PIBT2 [42], LNS2 [43, 125], and LaCAM [40]. Although most domains are considered, re-

searchers typically select only 1 to 2 maps per domain for evaluation. The number of instances

selected for experiments meanwhile is small relative to the total available instances. In partic-

ular, most research increases the number of selected source and destination locations by 5 or

10 until the selected algorithm returns a timeout failure. Therefore, the coverage of reported

results across the benchmark (sub-)set is incomplete.

Another related issue is that experimental results now appear in many different venues across

the literature. Thus, it is increasingly difficult to keep track of all recent advancements. More-

over, although headline results are published (e.g., success rate and total problems solved),

detailed supplementary material, to indicate exactly which problems were solved and how well,

are usually not publicly accessible. Short of large-scale re-evaluations of many published works,

it has become difficult to know exactly how much progress is being made in the area, and it is

difficult to know how to select an appropriate subset of competitors for experimental compar-

isons. As shown in Table 7.1, most research handles these issues by comparing against only 1

or 2 closest rivals, yet there are far more researches claiming state-of-the-art results each year.
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7.2.2 Existing Work on Large-scale Evaluation

Several recent initiatives have attempted to track MAPF performance. The community website,

mapf.info1, features a dedicated page that encourages researchers to report their results. But

there is no consistent way to submit, manage, or explore these results. Thus, since its inception

more than two years ago, only one algorithm has been reported here, with only summary results

and no proof of claim.

Another recent attempt is due to Kaduri et al. [150], who conducted a large-scale experiment

to compare 5 leading optimal MAPF algorithms. Authors evaluate all maps and scenarios from

the MAPF benchmark suite. Meanwhile in Ren et al. [151], authors evaluate six recent optimal

algorithms, in another large-scale experiment. In these works, authors analyse the percentage

of instances solved by each algorithm and observe general trends. A main drawback of these

research works is the limited coverage of algorithms, including notable exclusions such as BCP-7

[96] and CBSH-RCT [130] (two very successful and performant solvers). In addition, authors

only give summary results. For example, detailed progress for each domain and instance is

unavailable. Plans, plan costs and best-known bounds are also unavailable, which makes it

difficult to judge progress in the area, difficult to validate results and impossible to include new

points of comparison (without re-producing the experiment). Recently in Ewing et al. [152]

authors evaluate seven different algorithms to determine features that make MAPF problems

hard. Although wide-ranging, experiments are on non-standard problem sets. Detailed data is

unavailable.

Discussion: Substantial interest and large recent advances have grown the size of the MAPF

community. These are positive developments, but they come at a price: progress is harder to

track, the main challenges are less clear, and barriers for entry are increasing. To continue

growing the MAPF community needs effective tools: to track progress, investigate results,

simplify comparisons and to help researchers stay up to date with recent developments.

7.3 Methodology

In this section, we introduce our methodology to track the progress of different methods on

MAPF benchmarks. In general, there are three types of algorithms studied by the research

community:

(i) Optimal Algorithms focus on finding exact optimal solutions. Such algorithms start

from a lower-bound of the optimal solution, and progressively push the lower-bound until

they find a feasible solution that is provably optimal.

1http://mapf.info/index.php/Data/Data

http://mapf.info/index.php/Data/Data
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(ii) Bounded Suboptimal Algorithms find the suboptimal solution within theoretical

guarantees. These algorithms explore the lower-bound and feasible solutions simulta-

neously, and return the solution that is within certain suboptimality w.r.t. current best

lower-bound.

(iii) Unbounded Suboptimal Algorithms focus on finding feasible solutions. These algo-

rithms find the feasible solution fast, and may keep improving it given sufficient time.

Our goal is to design a system that tracks different types of algorithms and their progress

together. The critically important feature for us is the ability to handle all types of algorithms.

Therefore, we focus on two important results reported by different MAPF algorithms: (a) best

(i.e., largest) lower-bound value: we track this value to cover the algorithms in (i) and (ii);

and (b) best (i.e., smallest SIC) solution: we record this result to cover the algorithms in (ii)

and (iii). In addition to bounds and costs, runtime is another frequently used metric that can

further distinguish between competing solvers. We do not attempt to track this aspect owing to

the large variability in configuration setups from one paper to the next. In the remainder of this

section, we explain our strategies for generating insight and systemic analysis from results data,

as well as a list of important things that we are tracking on different levels of the benchmark.

7.3.1 Instance-level Tracking

At the instance level, our system records the best lower-bound and solution cost as explained

above. For each reported lower-bound or valid plan we also keep track of additional metadata,

such as the algorithm that produced the result, names of authors, publication references and

links to implementations. We then use the data to provide additional insights:

Tracking the concrete plan: each instance contains a different number of agents, however, it

is not clear how these agents are distributed w.r.t. the obstacles of map, and how their solution

paths interact on the map. Our system records a concrete plan for each best known solution

cost and provides a visualiser to better understand those solutions.

Tracking the gap: For each instance, we may have different algorithms which contribute

lower-bounds and solutions (upper bounds) separately. Together, we need to analyse how close

these algorithms are in terms of finding and proving optimal solutions. Therefore, we automat-

ically track and visualise the suboptimality ratio of each instance defined as (S − L) / L where

L and S are the best known lower-bound and solution of the instance, respectively.
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7.3.2 Scenario-level Tracking

All instances in a scenario are categorised into three types: (i) closed instance: the instance

has the same best lower-bound and solution cost (indicating that the solution cannot be further

improved); (ii) solved instance: the instance has a feasible solution reported, but the current best

lower-bound is less than the solution cost (i.e., improvement may be possible); and (iii) unknown

instance: the instance has no solution reported. For each scenario, our system tracks the

percentage of closed and solved instances to indicate the progress of all contributed algorithms.

For scenarios of the same map, we also track the following:

Tracking progress on scenarios: For a given map, our system automatically generates plots

which shows the percentage of closed, solved and unknown instances for every scenario. The

objective here is to identify the scenarios that are hard to solve with existing MAPF algorithms,

so that more attention can be paid to these.

Tracking progress on different number of agents: Each scenario contains instances with dif-

ferent numbers of agents. It is important to understand the scalability of MAPF algorithms

across all scenarios (i.e., at what number of agents we stop making progress). Therefore, our

system includes the percentages of closed, solved and unknown instances for different number

of agents on the same map.

7.3.3 Domain and Map-level Tracking

Finally, at the map-level of the benchmark, our system records the percentages of closed and

solved instances for each map. Similar to the scenario-level, our system also generates plots to

track the percentages of closed, solved, and unknown instances across all maps, and summarises

the related maps for each domain to provide domain-level plots. This allows researchers to focus

their efforts on solving those parts of the benchmark that have seen only limited progress.

7.3.4 Participation and Comparison

Another critical feature of our system is allowing other researchers to participate by submitting

their algorithms/results and establish the state-of-the-art together. For all the results we collect,

we make them publicly available and allow other researchers to download the results at each

level. In order to make it easy for researchers to evaluate their own progress against other

attempts we also provide tools to automatically compare algorithms, across every level of the

system. Our principal evaluation criteria are: # of instances a given algorithm closed; # of

instances that the algorithm solved; # of instances for which it achieved the best lower-bound;
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# of instances for which it reported the best solution. We apply these four criteria to summarise

the state-of-the-art for each type of algorithm (optimal, bounded- and unbounded-suboptimal).

7.3.5 Submission Interface

The submission interface is meant to make it easy for anyone in the community to upload

results for any of the benchmarks. A submission batch requires a minimal set of metadata

(details about the authors, the algorithm, its source code repository (if any)), and then consists

of, for each tackled instance (i.e. map, scenario, number of agents) a lower bound (if the

algorithm generates one), a solution cost (if the algorithm generates one), and a concrete plan

that meets the solution cost. The plan format is an ASCII string that specifies the movements

of agents at each timestep, e.g., the string ”udlrw” represents a agent moving up, down, left,

and right respectively, while w represents waiting at its current location. This is a compact way

of storing plans, and also extensible to more complex plan formats in the future. The format

for the submission is a .csv file. The system checks the validity of the plan and its solution

cost as it processes each entry. Thus, we can guarantee all upper bound information is valid.

We are unable to check lower bounds2 so they trusted by default. If any later stage we find a

lower bound is violated by correct plan, then we have direct evidence that the lower bounding

submission was erroneous. In this case, we remove all lower bounds in the batch from the

system.

7.4 Implementation and Initial Results

We implement our proposed system as a website3. For the back-end, we use Mongodb to manage

all submissions in a database, and use Nodejs to implement APIs in order to communicate

between database and web front-end. For the front-end, we use a React interface. To seed

the database, we evaluate four different state-of-the-art optimal algorithms. This allows us to

determine the best known lower bounds and optimal solutions. We also evaluate two leading

unbounded-suboptimal algorithms, to explore the best known feasible solutions for as many

instances as possible. All algorithms are implemented in C++ and compiled with -O3 flag,

the details of each algorithm are shown in Table 7.2. At this stage, our system focuses on the

MAPF algorithms that minimise the SIC, but could be extended to track progress on other

objectives (e.g., makespan). To ease the computational burden, we run each algorithm on each

instance for one minute by default. For CBSH2-RCT and CBSH2-RCT-CHBP4, we run the

2Although a format for checkable proofs for lower bounds of MAPF problems would be a valuable resource
for the community.

3Our website is accessible at: http://tracker.pathfinding.ai. A demo video giving an overview of the
system is also available at: http://tracker.pathfinding.ai/systemDemo.

4CBSH2-RCT-CHBP represents our enhanced version of the CBS algorithm, which is detailed in Chapter 6.

http://tracker.pathfinding.ai
http://tracker.pathfinding.ai/systemDemo
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Algorithm Name Github Link Type

CBSH2-RCT [34] https://github.com/Jiaoyang-Li/CBSH2-RTC Optimal
CBSH2-RCT-CHBP[50] https://github.com/bshen95/CBSH2-RTC-CHBP Optimal
BCP-MAPF [39] https://github.com/ed-lam/bcp-mapf Optimal
Lazy-CBS [41] https://bitbucket.org/gkgange/lazycbs Optimal
LNS2 [43] https://github.com/Jiaoyang-Li/MAPF-LNS2 Unbound suboptimal
LaCAM [40] https://github.com/Kei18/lacam Unbound suboptimal

Table 7.2: We list the optimal and unbounded suboptimal algorithms that we have evaluated
for our website.
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Berlin_1_256 256x256 city 50 49150 100% 26%
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empty-8-8 8x8 empty 50 1600 100% 98%
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Figure 7.1: Screenshots taken from our website. (i) Percentages of # of instances closed;
(ii) Percentages of # of instances solved; and (iii) Percentages of # of instances achieved best

solution by each algorithm for various domains.

algorithm for one minute and check whether the lower-bound value is increased when finished.

If so, we increase the timeout to another minute and keep searching. Otherwise, we terminate

the algorithm. For all algorithms, we run every instance of a scenario by increasing the number

of agents, and terminate if two instances in a row fail.

7.4.1 Domain and Map-level Analysis

We demonstrate how our website can be used to explore the new pareto-frontier, as well as

the insights for the submitted MAPF algorithms. To begin, Figure 7.1 shows the plots that

summarise the submitted algorithms on each domain.

Figure 7.1 (i) shows the # of instances closed by each algorithm (shown as percentage).

BCP-MAPF slightly outperforms the CBS variations, CBSH2-RTC and CBSH2-RTC-CHBP,

on most of the domains, but achieves a lower number of instances closed than Lazy-CBS on the

Empty and Random maps. This shows that the exponential reduction in search that Lazy-CBS

can achieve pays off on these smaller maps. However, no existing solver is able to close many

instances for domains such as Maze, Room and Games. Thus, more attention is needed on how

to solve these domains optimally.

https://github.com/Jiaoyang-Li/CBSH2-RTC
https://github.com/bshen95/CBSH2-RTC-CHBP
https://github.com/ed-lam/bcp-mapf
https://bitbucket.org/gkgange/lazycbs
https://github.com/Jiaoyang-Li/MAPF-LNS2
https://github.com/Kei18/lacam
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Tracking Progress in MAPF
An repository maintains the results of MAPF Benchmark
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Figure 7.2: Screenshots taken from our website. Percentages of # closed, solved and unknown
instances shown for various maps on x-axis.

Figure 7.1 (ii) shows the # of instances solved by each algorithm. Clearly, LNS2 significantly

outperforms the four optimal solvers in terms of # of instances solved. LaCAM further mitigates

the weaknesses of LNS2 and is able to solve more instances than LNS2 on domains such as Room

and Game. But, again, no solver is able to effectively tackle maze maps.

Figure 7.1 (iii) shows the # of best solutions achieved in order to compare the solution quality

of the solved instances for each algorithm. Although LaCAM can solve more instances than

LNS2 on Room and Game maps, surprisingly, the solution quality of the solved instances of

LaCAM is dominated by LNS2 on every domain. In fact, LaCAM is dominated by all other

algorithms and finds the best solution when it is the only algorithm capable of finding a solution.

To further dig into the details, Figure 7.2 demonstrates the collective progress that all al-

gorithms have made for different maps in terms of the number of closed, solved and unknown

instances. Other than Maze maps, where no solver is able to perform well, almost all instances

on all maps have been completely solved. Yet we are still a long way from being able to close

all instances. Additionally, we see that some of the large-scale game maps, such as orz900d,

den312d and brc202d, are not only far from being completely solved yet, but they also have

a low number of closed instances – less than 15% are provably optimal. We now move our

attention to the next level down, and focus on the map orz900d.
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Figure 7.3: Screenshots taken from our website. (i) Percentages of instances solved; and (ii)
Percentages of instances achieving best solution by each algorithm for different number of agents
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Figure 7.4: Screenshots taken from our website. Percentages of instances achieving best
solution (i) by each algorithm; and (ii) by LNS2 and LACAM only, for different number of

agents on x-axis, we show the result for game map: empty-16-16.

7.4.2 Scenario-level Analysis

Figure 7.3 shows the comparison between different solvers on different number of agents for the

game map, orz900d. On the left, Figure 7.3 (i) shows # of instances solved by each algorithm,

where we see the optimal solvers (e.g., BCP-MAPF, Lazy-CBS, CBSH2-RTC and CBSH2-RTC-

CHBP) can only scale up to no more than 181 agents. LNS2 is able to solve the instances on

more # of agents than the optimal solvers with a maximum improvement of up to four times.

LaCAM can scale to many more agents. Clearly, LaCAM outperforms the other solvers, the #

of instances it can solve safely scales to around two thousand agents and slowly decreases until

reaching around five thousand agents. Figure 7.3 (ii) presents the # of instances where each

algorithm achieved the best solution. Unsurprisingly, as we have seen before, LaCAM almost

never achieves the best solutions on these instances that are solved by LNS2 or any other solvers.

Note that Figure 7.3 (ii) does not really allow us to contrast the optimal solvers, since they

all can only handle a few instances. Figure 7.4 (i) show the same plots for the much smaller

map empty-16-16, here we can see that CBSH2-RTC finds the best solution for about half

the instances, and CBSH2-RTC-CHBP slightly improves upon this, BCP improves further, and

Lazy-CBS even further. All of the optimal solvers fail after 85 agents. We can see that on some



121

Tracking Progress in MAPF
An repository maintains the results of MAPF Benchmark
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Figure 7.5: Screenshots taken from our website. Percentages of closed, solved and unknown
instances shown for various scenarios of orz900d map on x-axis.

small instances where LaCAM also finds the optimal solution. LNS2 finds best solutions early-

on (obscured in the plot) and then dips down, as it finds suboptimal solutions, then returns

to 100% (best known solution) for instances where the optimal solvers are unable to prove

optimality. The platform allows us to just plot some solvers, restricting to LaCAM and LNS2,

Figure 7.4 (ii) shows how good LNS2 is at finding optimal solutions on smaller instances. This

illustrates how we can use the platform to easily compare solvers on a single map. We now

return to analysing orz900d.

Figure 7.5 shows the collective progress that all algorithms have made across the different

scenarios of orz900d, again in terms of the number of closed, solved and unknown instances.

Interestingly, although we have seen there is a large proportion of instances not solved when

the # of agents is high, all randomly generated scenarios (i.e., rand 1 - 25) are 100% solved,

the unsolved instances only arise in the evenly generated scenarios (i.e., even 1 - 25). This is

because the randomly generated scenarios contain up to one thousand agents, whereas the evenly

generated scenarios have around six thousand agents in each scenario file. In even scenarios,

the source and destination locations are generated based on the maximum grid distance5, dmax,

between any two traversable cells on the map. The map is divided into ⌊dmax/4 + 1⌋ buckets
of (s, g) pairs, where the i-th bucket contains 10 (s, g) pairs with a grid distance between them

within the range of i × 4 to (i + 1) × 4. Thus, the number of agents can become large as the

size of the map increases. Next, we zoom in to the next-level, to further explore the insight of

even-1 scenarios.

5The grid distance refers to the optimal distance on a grid map between the source and destination, while
ignoring other agents in the map.
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Tracking Progress in MAPF
An repository maintains the results of MAPF Benchmark

Lower Bound Record Solution Record
V
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2 2022-11-17 4964 2022-11-17 4964
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Figure 7.6: Screenshots taken from our website. The suboptimality ratio (i.e., (S − L) / L
where L and S are the best known lower-bound and solution of the instance) on different #

agents for even-1 scenario on orz900d map.

7.4.3 Instance-level Analysis

Figure 7.6 shows the suboptimality ratio between best known lower-bound and solution of

instances with various # agents on x-axis. Since most instances for the even-1 scenario of

orz900d are solved only by LaCAM, the suboptimality is computed based on the trivial lower

bound (i.e., the SIC of each agent follows the shortest path by ignoring other agents), thus the

value indicates the upper bound of suboptimality, where the solution quality of solved instances

for LaCAM is no more than around 40% worse than the optimal solution.

Now, let us focus on a particular instance in order to analyse why other algorithms can

not solve it. Figure 7.7 shows a screenshot of a feasible solution for an instance of even-1

scenario on part of the orz900d map, where the # agents is 4119. From the figure we see

that substantial congestion forms around obstacle corners. Tightly bending around corners

is a necessary condition for individually optimal paths, but with many agents on the map,

following those individually optimal paths incurs substantial delays. We see that agents wait

and must form queues to reach their destination locations. This behaviour is characteristic of

the Push-and-Swap [42, 119] strategy used in LaCAM. This strategy essentially asks each agent

to follow its shortest path if possible, but tries to push or swap the locations with other agents

when they are in conflict. Optimal solvers can not solve this instance, because they rely on

complicated reasoning techniques to resolve the conflicts occurring in an infeasible plan. Indeed

such techniques can only scale up to hundreds of agents. LNS2 meanwhile uses a two-step

framework that first plans an initial solution using prioritised planning and then improves that
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84

4x

Figure 7.7: A feasible solution has been found for an even-1 scenario instance on the orz900d
map, where # of agents is 4119. We show the screenshot on part of the map from the visualizer

of our website. The colored points represent individual agents.

solution using a Large Neighbourhood Search (LNS). The core of this approach – prioritised

planning – is known for being very fast and effective, especially on large maps where many paths

exist for each agent. Why then is LNS2 unable to solve this instance?

In this case, our visualisation shows that planning in the congested area requires avoiding

many temporal obstacles. We also see that agent source locations are far from their destination

positions. The combination (long path, many temporal obstacles) explodes the size of the

time domain. The effect is that individual path planning times increase, from milliseconds per

query on other maps to several seconds per query on this map. We now see that LNS2 fails

because there is not enough time to even compute an initial plan. This analysis points out

a place where researchers might try to improve the state-of-the-art: by developing better and

more effective low-level solvers for the LNS2 algorithm. It seems likely that such cases were

not considered during the original development. Fortunately, LNS2 can work with any initial

solution, just using its second phase to improve it. One notable takeaway from our analysis is

the potential for combining LNS2 and LaCAM. In the combination, we can leverage LaCAM

to obtain an initial solution quickly, while utilising LNS to continuously improve the solution
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quality in remaining computation time. This combination effectively addresses the drawbacks

of both algorithms at the same time, and represents an interesting direction for future work.

7.5 Discussion

We introduce a new set of methodologies to track the progress of MAPF from various perspec-

tives. We evaluate several currently leading optimal and suboptimal solvers on a large-scale

experiment. The detailed results are publicly accessible and illustrated by a set of well-built

visualisation tools on our online platform. We believe that our platform helps: identify the

remaining challenges in MAPF problems; establish state-of-the-art performance; and provide a

valuable dynamic resource for understanding the various challenges arising in MAPF.

Currently, the platform concentrates only on lower and upper bounds for problem instances.

This is usual in the world of optimisation problems, since it allows us to understand the gap

between lower and upper bounds, and hence how far away an instance is likely to be from being

closed. It also allows us to attribute the closure of instances to particular algorithms. The

platform does not consider run times, and indeed many of the results currently there could

be improved by giving more runtime to the algorithms.6 Clearly, runtimes are of interest in

practice. But runtime is hard to compare fairly (over different machines), and indeed there is

no way to guarantee claimed runtimes as part of a submission are indeed correct. A future

direction for the platform is to allow executables to be submitted, and then run for a fixed

amount of wall clock time on each instance. This would give us a more detailed view of the

state-of-the-art from the run-time perspective. Another interesting direction is to extend the

platform to different types of agent models. This would allow the community to track progress

on a variety of different MAPF variants, which all share common benchmarks; e.g., Continuous-

time MAPF [153]. Lastly, we would like to mention that the objective of our website is not

merely to determine a winning algorithm, but rather to generate valuable insights that can

assist researchers in their endeavors. Indeed, comprehending the performance of algorithms on a

benchmark suite presents a multifaceted challenge [154], and perhaps the establishment of these

benchmarking utilities should follow an entirely open process involving the entire community.

Nevertheless, it is essential to establish a starting point for this journey.

6Although in many cases doubling or even multiplying available time by 10 will make little difference, and
CBS algorithms may run out of memory before reaching the time limit [92].



Chapter 8

Final Remarks

Pathfinding queries are one of the most ubiquitous uses of computing and are fundamental for

many real-world applications. In this dissertation, we develop efficient yet effective algorithms

for solving pathfinding problems in various environments with different computational challenges

that have been identified in Chapter 3. Specifically, our algorithms advance the state-of-the-

art in several distinct parts of the literature: computer games, route planning software, and

automated warehouses.

8.1 Advances in Pathfinding for Computer Games

In Chapter 3, we investigated the pathfinding problem in computer games where the environ-

ment comprises a Euclidean plane with polygon-shaped obstacles. Limited researches have been

conducted on pathfinding in a Euclidean space, and most of the existing solutions have to suffer

the issue of first move lag (i.e., Challenge #1). In this dissertation, we developed End-Point

Search (EPS), an optimal algorithm that overcomes this issue through the use of any-time be-

haviour. Not only does EPS exhibit strong any-time behaviour, but it is also significantly faster

than several state-of-the-art algorithms, e.g., EPS is approximately 2-3 times faster than SUB-

NL (i.e., the fastest suboptimal grid planner), 2-4 times faster than ENLSVG (i.e., the fastest

visibility graph planner), and up to an order of magnitude faster than Polyanya (i.e., the fastest

online planner). Our second strategy of migrating first move lag is through the development of

Centroid Path Extraction (CPE), a bounded suboptimal algorithm that completely avoids the

search process by constructing an oracle to efficiently extract suboptimal paths. Our experi-

ments demonstrate that CPE outperforms leading suboptimal algorithms SUB-NL variations,

in terms of path quality. Additionally, CPE achieves faster run times than EPS by at least an

order of magnitude.
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Although we have developed efficient algorithms for pathfinding in two-dimensional space,

with the game industry’s growing interest in developing games in higher-dimensional spaces,

the need for efficient navigation techniques in such spaces has become increasingly urgent and

indispensable. Thus, a promising future direction could be:

Pathfinding in Higher-Dimensional Space. While pathfinding in 2D space is well-

studied, research on pathfinding in 3D space is limited. Most current approaches involve

modelling the 3D environment as a grid map and adapting popular grid-based pathfinding

techniques to address the challenges of 3D navigation. Despite attempts to reduce the search

space by adapting Jump Point Search (JPS) [155], pathfinding in 3D still runs extremely slowly

due to a large number of grid cells, and may even run out of memory before a solution is found.

Similar to the 2D space, the traversable area in 3D contains a large number of grid cells but

a limited number of convex vertices around obstacles. Therefore, extending EPS to solve the

pathfinding problem in 3D shows promise. However, designing an efficient 3D pathfinding al-

gorithm to construct a visibility graph between convex vertices and insert connections from the

source and destination points to these vertices is a challenging task. One potential solution

could be to extend Anya [58] or Polyanya [14] to the 3D environment.

8.2 Advances in Pathfinding for Route Planning Software

Chapters 4 to 5 focus on the pathfinding problem in road networks for route planning software.

Our investigation includes two types of networks: (i) static road networks, where each edge is

assigned a non-negative constant value; and (ii) time-dependent road networks, where the cost

of each edge is represented by a travel time function that varies over time.

• In Chapter 4, we focus on the static road network. Although the leading oracle-based

approaches often find optimal paths fast, it still requires substantial time and memory to

build and store the oracle (i.e., Challenge #2). In this dissertation, we overcome this is-

sue by developing a novel oracle called CH-CPD. CH-CPD utilises the shortcuts introduced

by Contraction Hierarchies (CH) to address the drawbacks of conventional Compressed

Path Databases (CPD) and further improves the preprocessing time by caching the dis-

tances of “important nodes” from CH. In our experiments, we demonstrate that CH-CPD

requires less preprocessing time than conventional CPD and outperforms several existing

algorithms, including CH and CPD. Additionally, we also introduce the partial CH-CPD

search, which guarantees finding the optimal path by constructing the CH-CPD only for

a portion of the CH nodes. This approach further reduces preprocessing costs (i.e., time

and space) while maintaining competitive runtime.
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• In Chapter 5, we focus on the time-dependent road network. Unlike static road networks,

time-dependent networks require more complex travel time functions that change over a

large period of time. Thus, existing algorithms often compute solutions slowly and re-

quire substantial time and memory to construct auxiliary data structures covering the

entire time domain (i.e., Challenge #3). To address the issue, we focus on enhanc-

ing the state-of-the-art algorithm, Time-dependent contraction Hierarchies (TCH). First,

we demonstrate that TCH can be improved by incorporating time-independent heuristics

such as landmarks and advanced path databases heuristic. While these heuristics require

preprocessing, the supporting data structure does not scale larger with time domain in-

creasing. Second, we show that TCH can be accelerated by dividing the time domain to

construct multiple sub-TCHs that only cover a smaller time period of time domain. Ex-

periments show that our heuristic methods improve TCH by a factor of 2-3. Additionally,

our time-splitting algorithms are approximately 3 times faster than TCH. By combining

both heuristic and time-splitting algorithms, we achieve the best performance, resulting

in a speedup by a factor of 5.

Throughout our studies of pathfinding problem in road network, we have seen the superiority

of oracle-based approaches for finding the optimal path. However, the dynamic nature of road

networks requires frequent updates to edge costs to reflect real-life road conditions, such as road

closures, event schedules, etc. As a result, the pre-computed oracles may become unreliable and

unable to accurately respond to pathfinding queries. Therefore, a future direction could be:

Dynamically Updating the Path Oracle. Most of the existing works of path oracle focus

on improving the compression [79] and storing the oracle distributively [25]. However, there is

no clear way of updating the path oracle without completely reconstructing it. One potential

approach for handling updates is to assign labels to each edge, similar to the technique described

for Arc flags [20], which involves identifying a set of nodes that could be affected by any change

in the cost of the edge. During the update phase, we can reconstruct only the rows or columns

of the path oracle that contain these nodes. However, creating and maintaining such an edge

index poses an interesting problem. Another possible method for updating is through graph

decomposition [156], where we divide the network into a set of sub-graphs and construct a path

oracle for each sub-graph. While updating a single path oracle becomes less expensive, using

multiple sub-oracles to find the optimal path presents another challenging problem.

8.3 Advances in Pathfinding for Automated Warehouses

Chapter 6 to 7 focus on the pathfinding problem in automated warehouses, which requires the

coordination of numerous agents simultaneously. The key coordination challenge, known as
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Multi-Agent Path Finding (MAPF), considers the environment as a discretised grid map and

aims to find collision-free paths for each agent that minimise the sum of their individual path

costs. Our contributions to this area are twofold:

• In Chapter 6, we focus on improving Conflict-Based Search (CBS), a leading search-based

algorithm that finds the optimal solution for MAPF problems. Although there has been

massive advances for improving the CBS, existing works only reason about incompatibility

between at most two agents at a time (i.e., Challenge #4). In this dissertation, we

overcome this issue by developing a new algorithmic technique called Cluster Heuristic and

ByPass (CHBP). CHBP leverages mutex propagation to determine the incompatibility of

clusters of more than two agents. These conflict clusters assist CBS in obtaining stronger

bounds and devising innovative bypasses, resulting in a significant reduction in the size

of the CT tree. Through a range of experimental results, we demonstrate that CHBP is

able to solve more instances than CBSH2-RTC (i.e., the leading CBS variation) within

the same runtime. For the co-solvable instances, CHBP runs faster than CBSH2-RTC

with speedups up to one order of magnitude. On the other hand, CHBP pushes the lower-

bound (i.e., fmin) to a significantly higher value for the instances that cannot be solved

within the time limit.

• In Chapter 7, we aim to improve the standardised MAPF benchmarks [3]. As the in-

dustrial interests continue to grow, the number of publications on MAPF have exploded,

making it difficult to track the progress (i.e., Challenge #5). In this dissertation, we

present an online platform that provides researchers with a suite of methodological and

visualisation tools to systematically analyse benchmarks and compare between a wide

range of MAPF methods. By undertaking a large set of experiments with several leading

optimal and suboptimal solvers, we demonstrate how our system can be used to identify

the current Pareto frontier, highlight the strengths of existing research, and uncover re-

maining challenges within the field. Moving forward, we believe our proposed platform

will alleviate the barriers to entry for new research on MAPF.

In the classic Multi-Agent Path Finding (MAPF) problem, we have improved the CBS al-

gorithm by addressing one of its open problems - reasoning about the incompatibility of more

than two agents. Our innovative cluster reasoning technique CHBP represents a new approach

that opens up exciting possibilities for further improvement of the CBS family of algorithms.

Specifically, we detail the three future directions that are promising:

• Improving Clusters Detection: CHBP detects conflict clusters by incrementally per-

forming mutex propagation from one agent to others. However, this approach has two

main limitations. Firstly, it may result in the detection of superset clusters that include
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unnecessary agents. Secondly, it may fail to detect some of the more complex clusters.

These drawbacks arise because the cluster detection process only considers the incom-

patible nodes identified by the mutex propagation. Therefore, one possible approach for

enhancing cluster detection is to employ a more powerful reasoning technique or a more

sophisticated use of mutex propagation.

• Integrating WDG Heuristic: Currently, CHBP identifies conflict clusters that are

independent of each other and with the WDG heuristic. To generate a stronger heuristic,

a possible strategy is to perform greedy cluster detection on each agent and then formulate

a linear integer problem to compute the overall increasing cost of clusters and agent pairs.

However, a key challenge is to ensure that these more sophisticated heuristics can be

computed efficiently, as the performance may be degraded even if a better heuristic is

computed but at a much higher computation cost.

• Resolving Cluster Conflicts: In their study, Li et al. [34] have shown that resolving

symmetric conflicts between pairs of agents can substantially decrease high-level node

expansion, resulting in improved performance for CBS. Similarly, the CBS algorithm also

needs to generate a considerable number of CT nodes to resolve conflicts within a conflict

cluster. Consequently, developing efficient algorithms to generate constraints for resolving

conflict clusters is the next critical challenge that needs to be addressed to enable further

improvement of the CBS family of algorithms.

As discussed in Chapter 7, another promising future direction for the classic Multi-Agent Path

Finding (MAPF) problem is to combine the Large Neighbourhood Search (LNS2) [43] with the

Lazy Constraint Addition Search (LaCAM) [40]:

• Combining LNS2 with LaCAM: The initial results from our online platform demon-

strate that LaCAM can find feasible solutions on most instances, though those solutions

almost always have a lower solution quality than other solvers. In contrast, LNS2 typically

finds solutions with reasonable quality, but often fails on these challenging instances with

a large number of agents. This is because LNS2 relies on a prioritised planning algorithm

to find an initial solution, which often fails to return a solution when large groups of agents

are congested in a particular area of the map. Fortunately, LNS2 is a two-step framework

that can work with any initial solution. Therefore, a notable takeaway from our analy-

sis is the potential to combine LNS2 and LaCAM. In this combination, we can leverage

LaCAM to obtain an initial solution quickly, while utilising LNS to continuously improve

the solution quality in remaining computation time. We believe this combination can lead

to a new state-of-the-art unbounded suboptimal solver for MAPF, effectively addressing

the drawbacks of both algorithms at the same time.
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[109] Michael A. Erdmann and Tomás Lozano-Pérez. On multiple moving objects. Algorithmica,

2:477–521, 1987.

[110] Jur P. van den Berg and Mark H. Overmars. Prioritized motion planning for multiple

robots. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pages 430–435. IEEE, 2005.

[111] Jiangxing Wang, Jiaoyang Li, Hang Ma, Sven Koenig, and T. K. Satish Kumar. A new

constraint satisfaction perspective on multi-agent path finding: Preliminary results. In

Proceedings of the International Joint Conference on Autonomous Agents and Mult-Agent

Systems (AAMAS), pages 2253–2255. International Foundation for Autonomous Agents

and Multiagent Systems, 2019.

[112] Shuyang Zhang, Jiaoyang Li, Taoan Huang, Sven Koenig, and Bistra Dilkina. Learning

a priority ordering for prioritized planning in multi-agent path finding. In Proceedings



Bibliography 140

of the International Symposium on Combinatorial Search (SoCS), pages 208–216. AAAI

Press, 2022.

[113] Hang Ma, Daniel Harabor, Peter J. Stuckey, Jiaoyang Li, and Sven Koenig. Searching

with consistent prioritization for multi-agent path finding. In Proceedings of the AAAI

Conference on Artificial Intelligence (AAAI), pages 7643–7650. AAAI Press, 2019.

[114] David Silver. Cooperative pathfinding. In Proceedings of the AAAI Conference on Arti-

ficial Intelligence and Interactive Digital Entertainment (AIIDE), pages 117–122. AAAI

Press, 2005.

[115] Ellips Masehian and Azadeh Hassan Nejad. Solvability of multi robot motion planning

problems on trees. In Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pages 5936–5941. IEEE, 2009.

[116] Pavel Surynek. A novel approach to path planning for multiple robots in bi-connected

graphs. In Proceedings of the IEEE International Conference on Robotics and Automation

(ICRA), pages 3613–3619. IEEE, 2009.

[117] Dingyuan Shi, Nan Zhou, Yongxin Tong, Zimu Zhou, Yi Xu, and Ke Xu. Collision-aware

route planning in warehouses made efficient: A strip-based framework. In Proceedings of

the IEEE International Conference on Data Engineering (ICDE). IEEE, 2023.

[118] Ko-Hsin Cindy Wang and Adi Botea. MAPP: a scalable multi-agent path planning al-

gorithm with tractability and completeness guarantees. Journal of Artificial Intelligence

Research, 42:55–90, 2011.

[119] Ryan Luna and Kostas E. Bekris. Push and swap: Fast cooperative path-finding with

completeness guarantees. In Proceedings of the International Joint Conference on Artificial

Intelligence (IJCAI), pages 294–300. AAAI Press, 2011.

[120] Qandeel Sajid, Ryan Luna, and Kostas E. Bekris. Multi-agent pathfinding with simulta-

neous execution of single-agent primitives. In Proceedings of the International Symposium

on Combinatorial Search (SoCS), pages 88–96. AAAI Press, 2012.

[121] Boris de Wilde, Adriaan ter Mors, and Cees Witteveen. Push and rotate: cooperative

multi-agent path planning. In Proceedings of the International Joint Conference on Au-

tonomous Agents and Mult-Agent Systems (AAMAS), pages 87–94. International Foun-

dation for Autonomous Agents and Multiagent Systems, 2013.

[122] Adam Wiktor, Dexter Scobee, Sean Messenger, and Christopher Clark. Decentralized and

complete multi-robot motion planning in confined spaces. In Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pages 1168–1175.

IEEE, 2014.



Bibliography 141

[123] Keisuke Okumura, Manao Machida, Xavier Défago, and Yasumasa Tamura. Priority
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